科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,平面平面,是以为斜边的等腰直角三角形,分别为,,的中点,,.
(1)设是的中点,证明:平面;
(2)在内是否存在一点,使平面,若存在,请找出点M,并求FM的长;若不存在,请说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)如图,、分别是正三棱柱的棱、的中点,且棱,.
(Ⅰ)求证:平面;
(Ⅱ)在棱上是否存在一点,使二面角的大小为,若存在,求的长;若不存在,说明理由。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知△BCD中,∠BCD=90°,BC=CD=1,AB⊥平面BCD,∠ADB=60°,E,F分别是AC,AD上的动点,且==λ (0<λ<1).
(1)求证:不论λ为何值,总有平面BEF⊥平面ABC;
(2)当λ为何值时?平面BEF⊥平面ACD.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)
如图(1)在直角梯形ABCP中,BC∥AP,AB⊥BC,CD⊥AP,AD=DC=PD=2,E、F、G分别是PC、PD、BC的中点,现将△PDC沿CD折起,使平面PDC⊥平面ABCD(如图2)
(1)求二面角G-EF-D的大小;
(2)在线段PB上确定一点Q,使PC⊥平面ADQ,并给出证明过程.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分13分)如图,在三棱柱ABC—A1B1C1中,侧面BB1C1C,已知AB=BC=1,BB1=2,,E为CC1的中点。
(1)求证:平面ABC;
(2)求二面角A—B1E—B的大小。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com