精英家教网 > 高中数学 > 题目详情

(本小题满分12分)如图,分别是正三棱柱的棱的中点,且棱.

(Ⅰ)求证:平面
(Ⅱ)在棱上是否存在一点,使二面角的大小为,若存在,求的长;若不存在,说明理由。

(1)见解析;(2)故棱上不存在使二面角的大小为的点.

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
如图,在三棱锥S-ABC中,BC⊥平面SAC,AD⊥SC.

(Ⅰ)求证:AD⊥平面SBC;
(Ⅱ)试在SB上找一点E,使得平面ABS⊥平面ADE,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE,G是BC的中点.沿EF将梯形ABCD翻折,
使平面AEFD⊥平面EBCF (如图).
(1)当时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;
(3)当取得最大值时,求二面角D-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在正方体ABCD-A1B1C1D1中,O为底面ABCD的中心,P是DD1的中点,设Q是CC1上的中点,求证:平面D1BQ∥平面PAO.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
六棱台的上、下底面均是正六边形,边长分别是8 cm和18 cm,侧面是全等的等腰梯形,侧棱长为13 cm,求它的表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,点在圆上,于点平面

(Ⅰ)证明:
(Ⅱ)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

直四棱柱的底面是菱形,,其侧面展开图是边长为的正方形.分别是侧棱上的动点,

(Ⅰ)证明:
(Ⅱ)在棱上,且,若∥平面,求.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.

(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)设PM="t" MC,若二面角M-BQ-C的平面角的大小为30°,试确定t的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求证:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.

查看答案和解析>>

同步练习册答案