精英家教网 > 高中数学 > 题目详情

本小题满分12分)如图,在三棱柱中,分别为的中点.
(1)求证:∥平面; (2)求证:平面
(3)直线与平面所成的角的正弦值.

(1)证明:连结,与交于点,连结

因为分别为的中点, 所以
平面平面, 所以∥平面.            
(2)证明:在直三棱柱中, 平面,又平面
所以. 因为中点, 所以
, 所以平面
平面,所以
因为四边形为正方形,分别为的中点,
所以
所以
所以. 又, 所以平面.   
(3)设CE与C1D交于点M,连AM
由(2)知点C在面AC1D上的射影为M,故∠CAM为直线AC与面AC1D所成的角,又A1C1//AC
所以∠CAM亦为直线A1C1与面AC1D所成的角。
易求得

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,是圆的直径,点在圆上,于点平面

(Ⅰ)证明:
(Ⅱ)求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

正△的边长为4,边上的高,分别是边的中点,现将△沿翻折成直二面角
(1)试判断直线与平面的位置关系,并说明理由;
(2)求平面BDC与平面DEF的夹角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
                         

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知正方体ABCD-A1B1C1D1的棱长为2,点P,Q,R分别是棱AB,CC1,D1A1的中点.
(1)求证:B1D^平面PQR;
(2)设二面角B1-PR-Q的大小为q,求|cosq|.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求证:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(14分)如图,圆柱内有一个三棱柱,三棱柱的 底面为圆柱
底面的内接三角形,且是圆的直径。
(I)证明:平面平面
(II)设,在圆内随机选取一点,记该点取自三棱柱内的概率为
(i)当点在圆周上运动时,求的最大值;
(ii)如果平面与平面所成的角为。当取最大值时,求的值。

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

已知长方体,下列向量的数量积一定不为的是 (   )

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

((本小题满分14分)如图,四棱锥的底面是正方形,侧棱底面分别是棱的中点.
(1)求证:;  (2) 求直线与平面所成的角的正切值

查看答案和解析>>

科目:高中数学 来源: 题型:单选题

如图所示,在正方体ABCD-A1B1C1D1

中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1上的动点,则直线NO、AM的位置关系是(  )

A.平行 B.相交
C.异面垂直 D.异面不垂直

查看答案和解析>>

同步练习册答案