如图,在四棱锥中,底面是矩形,侧棱PD⊥底面ABCD,PD=DC,E是PC的中点,作EF⊥PB交PB于点F.
(1)证明:PA∥平面EDB;
(2)证明:PB⊥平面EFD.
证明:(1)连结AC交BD于O,连结EO。
∵底面ABCD是正方形,
∴点O是AC的中点。
又∵E是PC的中点
∴在中,EO为中位线
∴PA∥EO。 …………………….3分
而EO平面EDB,PA平面EDB,
∴PA∥平面EDB。 ……………………6分
(2)由PD⊥底面ABCD,得PD⊥BC。
∵底面ABCD是正方形,
∴DC⊥BC,
∴BC⊥平面PDC,而DE平面PDC,
∴BC⊥DE。① ……………………8分
PD=DC,E是PC的中点,
∴是等腰三角形,DE⊥PC。② ……………………10分
由①和②得DE⊥平面PBC。
而PB平面PBC,
∴DE⊥PB。 ……………………12分
又EF⊥PB且DEEF=E,
∴PB⊥平面EFD。
解析
科目:高中数学 来源: 题型:解答题
(本小题满分14分)已知梯形ABCD中,AD∥BC,∠ABC =∠BAD,AB=BC=2AD=4,E、F分别是AB、CD上的点,EF∥BC,AE,G是BC的中点.沿EF将梯形ABCD翻折,
使平面AEFD⊥平面EBCF (如图).
(1)当时,求证:BD⊥EG ;
(2)若以F、B、C、D为顶点的三棱锥的体积记为,求的最大值;
(3)当取得最大值时,求二面角D-BF-C的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,底面ABCD为直角梯形,AD//BC,∠ADC=90°平面PAD⊥底面ABCD,Q为AD的中点,M是棱PC上的点,PA=PD=2,BC=AD=1,CD=.
(Ⅰ)求证:平面PQB⊥平面PAD;
(Ⅱ)设PM="t" MC,若二面角M-BQ-C的平面角的大小为30°,试确定t的值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本小题满分12分)已知平面,平面,△为等边三角形,边长为2a,,为的中点.
(1)求证:平面;
(2)求证:平面平面;
(3)求直线和平面所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
正△的边长为4,是边上的高,分别是和边的中点,现将△沿翻折成直二面角.
(1)试判断直线与平面的位置关系,并说明理由;
(2)求平面BDC与平面DEF的夹角的余弦值;
(3)在线段上是否存在一点,使?证明你的结论.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分14分)如图,在四棱锥E-ABCD中,底面ABCD为正方形, AE⊥平面CDE,已知AE=3,DE=4.
(Ⅰ)若F为DE的中点,求证:BE//平面ACF;
(Ⅱ)求直线BE与平面ABCD所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分12分)在四棱锥P—ABCD中,底面ABCD是a的正方形,PA⊥平面ABCD,且PA=2AB
(Ⅰ)求证:平面PAC⊥平面PBD;
(Ⅱ)求二面角B—PC—D的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:单选题
[2014·宁化模拟]若向量a=(2x,1,3),b=(1,-2y,9),且a∥b,则( )
A.x=1,y=1 | B.x=,y=- |
C.x=,y=- | D.x=-,y= |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com