精英家教网 > 高中数学 > 题目详情

温州某私营公司生产一种产品,根据历年的情况可知,生产该产品每天的固定成本为14000元,每生产一件该产品,成本增加210元.已知该产品的日销售量与产量之间的关系式为
,每件产品的售价与产量之间的关系式为

(Ⅰ)写出该公司的日销售利润与产量之间的关系式;
(Ⅱ)若要使得日销售利润最大,每天该生产多少件产品,并求出最大利润

解:(Ⅰ)总成本为.    -------------------------------------1分                         
所以日销售利润
.                    ……5分
(Ⅱ)①当时,.          
,解得.                          
于是在区间上单调递减,在区间上单调递增,所以时取到最大值,且最大值为30000; ---------------------------------------------8分                         
②当时,.              
综上所述,若要使得日销售利润最大,每天该生产400件产品,其最大利润为30000元. -----------------------------------------------------------------------------------------------10分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数.
(1)若对任意恒成立,求实数的取值范围;
(2)若函数的图像与直线有且仅有三个公共点,且公共点的横坐标的最大值为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知定义在区间上的函数为奇函数且
(1)求实数m,n的值;
(2)求证:函数上是增函数。
(3)若恒成立,求t的最小值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知9x-10·3x+9≤0,求函数y=x-1-4x+2的最大值和最小值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

集合M={a,b,c},N={-1,0,1},映射f:M→N满足f(a)+f(b)+f(c)=0,那么映射f:M→N的个数是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某工厂生产某种零件,每个零件的成本为40元,出厂单价定为60元,该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但实际出厂单价不能低于51元.
(1)当一次订购量为多少时,零件的实际出厂单价恰为51元;
(2)设一次订购量为x个,零件的实际出厂单价为P元,写出函数P=f(x)的表达式;
(3)当销售商一次订购500个零件时,该厂获得的利润是多少?如果订购1 000个,利润又是多少?(工厂售出一个零件的利润=实际出厂单价-成本

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数对任意都有且x>0时,<0, .(1)求在区间[-3,3]上的最大和最小值,(2)解关于x的不等式,(其中

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
已知函数在其定义域上满足
(1)函数的图象是否是中心对称图形?若是,请指出其对称中心(不证明);
(2)当时,求x的取值范围;
(3)若,数列满足,那么:
①若,正整数N满足时,对所有适合上述条件的数列恒成立,求最小的N
②若,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分10分)
小刘家要建造一个长方形无盖蓄水池,其容积为48,深为3.如果池底每平方米的造价为150元,池壁每平方米的造价为120元,怎样设计水池能使总造价最低?最低造价是多少?

查看答案和解析>>

同步练习册答案