精英家教网 > 高中数学 > 题目详情
1.已知曲线f(x)=$\frac{{x}^{2}+a}{x+1}$在点(1,f(1))处切线的斜率为1,则实数a的值为(  )
A.-$\frac{3}{4}$B.-1C.$\frac{3}{2}$D.2

分析 求出函数的导数f'(x),利用f'(1)=1,解a即可.

解答 解:∵f(x)=$\frac{{x}^{2}+a}{x+1}$,
∴f'(x)=$\frac{{x}^{2}+2x-a}{(x+1)^{2}}$,
∵x=1处切线斜率为1,即f'(1)=1,
∴$\frac{3-a}{4}$=1,解得a=-1.
故选:B.

点评 本题主要考查导数的几何意义,以及导数的基本运算,考查学生的运算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.正方体ABCD-A′B′C′D′中,异面直线AB′与BD 所成的角为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.某化工厂每一天中污水污染指数f(x)与时刻x(时)的函数关系为f(x)=|log25(x+1)-a|+2a+1,x∈[0,24],其中a为污水治理调节参数,且a∈(0,1).
(1)若$a=\frac{1}{2}$,求一天中哪个时刻污水污染指数最低;
(2)规定每天中f(x)的最大值作为当天的污水污染指数,要使该厂每天的污水污染指数不超过3,则调节参数a应控制在什么范围内?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.书架上有2本不同的语文书,3本不同的数学书,从中任意取出2本,取出的书恰好都是数学书的概率为(  )
A.$\frac{3}{10}$B.$\frac{1}{4}$C.$\frac{3}{7}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.正方体12条棱所在直线中成异面直线的有24对.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.在平面直角坐标系xOy中,双曲线$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{6}$=1的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=(x-1)ex+ax2,a∈R.
(Ⅰ)讨论函数f(x)的单调区间;
(Ⅱ)若f(x)有两个零点,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.对于奇数n,求值:cos$\frac{nπ}{7}$-cos$\frac{2nπ}{7}$+cos$\frac{3nπ}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在平行四边形ABCD中,点M,N分别在边BC,CD上,且满足BC=3MC,DC=4NC,若AB=4,AD=3,则$\overrightarrow{AN}•\overrightarrow{MN}$=(  )
A.$-\sqrt{7}$B.0C.$\sqrt{7}$D.7

查看答案和解析>>

同步练习册答案