精英家教网 > 高中数学 > 题目详情
12.正方体12条棱所在直线中成异面直线的有24对.

分析 在正方体ABCD-A1B1C1D1中,与棱AB异面的有CC1,DD1,B1C1,A1D1共4对,正方体ABCD-A1B1C1D1有12条棱,由此能求出异面直线共有多少对.

解答 解:如图,在正方体ABCD-A1B1C1D1中,
与棱AB异面的有CC1,DD1,B1C1,A1D1共4对,
正方体ABCD-A1B1C1D1有12条棱,
排除两棱的重复计算,
∴异面直线共有12×4×$\frac{1}{2}$=24对.
故答案为:24.

点评 本题考查异面直线的判断,是基础题,解题时要认真审题,注意正方体的结构特征的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设m,n是两条不同的直线,α,β是两个不同的平面(  )
A.若m∥n,m⊥α,则n⊥αB.若m∥α,m∥β,则α∥βC.若m∥α,n∥α,则m∥nD.若m∥α,α⊥β,则m⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知点(0,2)关于直线l的对称点为(4,0),点(6,3)关于直线l的对称点为(m,n),则m+n=$\frac{33}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.正方体ABCD-A1B1C1D1中,E为AB中点,F为CD1中点.
(1)求证:EF∥平面ADD1A1
(2)AB=2,求三棱锥D1-DEF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.一个车间为了规定工时定额,需要确定加工零件所花费的时间,由此进行了5次实验,收集数据如下:
零件数:x个1020304050
加工时间:y分钟5971758189
由以上数据的线性回归方程估计加工100个零件所花费的时间为(  )
附:回归直线的斜率和截距的最小二乘估计公式分别为$\widehatb=\frac{{\sum_{i=1}^n{({{x_i}-\overline x})({{y_i}-\overline y})}}}{{\sum_{i=1}^n{{{({{x_i}-\overline x})}^2}}}}$,$\widehata=\overline y-\widehatb\overline x$.
A.124分钟B.150分钟C.162分钟D.178分钟

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知曲线f(x)=$\frac{{x}^{2}+a}{x+1}$在点(1,f(1))处切线的斜率为1,则实数a的值为(  )
A.-$\frac{3}{4}$B.-1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知p:函数f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2+x+b在R上是增函数,q:函数f(x)=xa-2在(0,+∞)上是增函数,则p是¬q的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知A,B,C是半径为l的圆O上的三点,AB为圆O的直径,P为圆O内一点(含圆周),则$\overrightarrow{PA}$$•\overrightarrow{PB}$$+\overrightarrow{PB}$$•\overrightarrow{PC}$$+\overrightarrow{PC}$$•\overrightarrow{PA}$的取值范围为[-$\frac{4}{3}$,4].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=|x|+|x+1|.
(1)若?x∈R,恒有f(x)≥λ成立,求实数λ的取值范围;
(2)若?m∈R,使得m2+2m+f(t)=0成立,试求实数t的取值范围.

查看答案和解析>>

同步练习册答案