分析 (1)若?x∈R,恒有f(x)≥λ成立,求出f(x)的最小值,即可求实数λ的取值范围;
(2)?m∈R,使得m2+2m+f(t)=0成立,f(t)≤1,再分类讨论,即可求实数t的取值范围.
解答 解:(1)f(x)=|x|+|x+1|≥1.
∵?x∈R,恒有f(x)≥λ成立,
∴λ≤1;
(2)由题意,f(t)=$\left\{\begin{array}{l}{-2t-1,t<-1}\\{1,-1≤t≤0}\\{2t+2,t>0}\end{array}\right.$,
?m∈R,使得m2+2m+f(t)=0成立,
∴△=4-4f(t)≥0,
∴f(t)≤1,
t<-1时,f(t)=-2t-1≤1,∴t≥-1,不合题意,舍去;
-1≤t≤0时,f(t)=1,此时f(t)≤1恒成立;
t>0时,f(t)=2t+1≤1,∴t≤0,不合题意,舍去;
综上所述,t的取值范围为[-1,0].
点评 本题考查绝对值不等式的解法,考查恒成立问题,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | 6174 | B. | 7083 | C. | 8341 | D. | 8352 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{7}{8}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $-\sqrt{7}$ | B. | 0 | C. | $\sqrt{7}$ | D. | 7 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | 0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com