精英家教网 > 高中数学 > 题目详情
10.若x,y满足$\left\{\begin{array}{l}{x≤2}\\{x-y+1≥0}\\{x+y-2≥0}\end{array}\right.$.则z=2x-y的最小值为(  )
A.4B.1C.0D.-$\frac{1}{2}$

分析 由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.

解答 解:由约束条件$\left\{\begin{array}{l}{x≤2}\\{x-y+1≥0}\\{x+y-2≥0}\end{array}\right.$作出可行域如图,

联立$\left\{\begin{array}{l}{x-y+1=0}\\{x+y-2=0}\end{array}\right.$,解得A($\frac{1}{2},\frac{3}{2}$),
化目标函数z=2x-y为y=2x-z,
由图可知,当直线y=2x-z过点A($\frac{1}{2},\frac{3}{2}$)时,直线在y轴上的截距最大,z有最小值为2×$\frac{1}{2}-\frac{3}{2}=-\frac{1}{2}$.
故选:D.

点评 本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

17.(2x+3y)8的展开式中共有9项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在一次调查中,甲、乙、丙、丁四名同学的阅读量有如下关系:甲、丙阅读量之和与乙、丁阅读量之和相同,甲、乙阅读量之和大于丙、丁阅读量之和,丁的阅读量大于乙、丙阅读量之和.那么这四名同学按阅读量从大到小的排序依次为甲丁乙丙.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设函数f(x)=$\frac{1}{1+px+q{x}^{2}}$(其中p2+q2≠0),且存在公差不为0的无穷等差数列{an},使得函数在其定义域内还可以表示为f(x)=1+a1x+a2x+a2x2+…+anxn+…
(1)求a1,a2的值(用p,q表示);
(2)求{an}的通项公式;
(3)当n∈N*且n≥2时,比较(an-1an与(an)${\;}^{{a}_{n-1}}$的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知f(x)=$\frac{a}{x-1}$+bcos($\frac{π}{2}x$),f(1-$\sqrt{2}$)=2,则f(1+$\sqrt{2}$)=(  )
A.0B.-2C.-4D.-6

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设a,b都是不等于1的正数,则“a>b”是“logb3>loga3>0”必要不充分的条件.(填“充分不必要”、“必要不充分”、“充要”或“既不充分也不必要”)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知复数z满足|z|-$\overline{z}$=2-4i,则z=3-4i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.某学校小学部有270人,初中部有360人,高中部有300人,为了调查学生身体发育状况的某项指标,若从初中部抽取了12人,则从该校应一共抽取31人进行该项调查.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.以下各式当n→∞时,极限值为$\frac{1}{2}$的是(  )
A.$\frac{n-2}{2n(n+1)}$B.$\frac{2{n}^{2}+1}{4n+1}$
C.($\sqrt{n+1}$-$\sqrt{n}$)$\sqrt{n}$D.$\frac{1+4+7+…+(3n-2)}{2{n}^{2}}$

查看答案和解析>>

同步练习册答案