【题目】已知函数
,
且
.
(1)若函数
在
上恒有意义,求
的取值范围;
(2)是否存在实数
,使函数
在区间
上为增函数,且最大值为
?若存在求出
的值,若不存在请说明理由.
【答案】(1)
;(2)
.
【解析】
(1)根据
在
上恒有意义,则
在
上恒成立.讨论对称轴的位置,即可求得
的取值范围.
(2)讨论
与
两种情况,结合复函函数单调性即可判断是否符合单调递增.再根据最大值为
,代入
的值,解方程即可求解.
(1)函数
在
上恒有意义
即
在
上恒成立
令![]()
对称轴为
,开口向上
当
时,只需
,即
,解得
,所以![]()
当
时,只需
,即
,解得
,所以![]()
当
时, 只需
,即
,解得
,所以![]()
综上可知,
的取值范围为![]()
(2)函数
对称轴为
由复合函数单调性的性质可知:
当
时
为单调递减函数,
在
上为单调递增函数,所以
在
上单调递减,不合题意
当
时,
为单调递增函数, 若
在
上单调递增,则
在
上为单调递增函数.
所以由对称轴在
左侧可得![]()
因为最大值为2,则![]()
即![]()
即
,化简可得
解得
或 ![]()
因为![]()
所以![]()
当
函数
在区间
上为增函数,且最大值为![]()
科目:高中数学 来源: 题型:
【题目】已知经销某种商品的电商在任何一个销售季度内,每售出
吨该商品可获利润
万元,未售出的商品,每
吨亏损
万元.根据往年的销售经验,得到一个销售季度内市场需求量的频率分布直方图如右图所示.已知电商为下一个销售季度筹备了
吨该商品.现以
(单位:吨,
)表示下一个销售季度的市场需求量,
(单位:万元)表示该电商下一个销售季度内经销该商品获得的利润.
(Ⅰ)根据频率分布直方图,估计一个销售季度内市场需求量
的平均数与中位数的大小;
(Ⅱ)根据直方图估计利润
不少于57万元的概率.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】《九章算术》卷五《商功》中有如下叙述“今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈“刍甍”指的是底面为矩形的对称型屋脊状的几何体,“下广三丈”是指底面矩形宽三丈,“袤四丈”是指底面矩形长四丈,“上袤二丈”是指脊长二丈,“无宽”是指脊无宽度,“高一丈”是指几何体的高为一丈.现有一个刍甍如图所示,下广三丈,袤四丈,上袤三丈,无广,高二丈,则该刍甍的外接球的表面积为_______________平方丈.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】一只药用昆虫的产卵数y与一定范围内的温度x有关,现收集了该种药用昆虫的6组观测数据如下表:
温度x/℃ | 21 | 23 | 24 | 27 | 29 | 32 |
产卵数y/个 | 6 | 11 | 20 | 27 | 57 | 77 |
经计算得:
,
,
线性回归模型的残差平方和
,
,
其中
分别为观测数据中的温度和产卵数,![]()
(1)若用线性回归模型,求y关于x的回归方程
(精确到0.1);
(2)若用非线性回归模型求得y关于x的回归方程为
,且相关指数
.
①试与1中的回归模型相比,用
说明哪种模型的拟合效果更好.
②用拟合效果好的模型预测温度为35℃时该用哪种药用昆虫的产卵数(结果取整数)
附:一组数据
其回归直线
的斜率和截距的最小二乘估计为
,
;相关指数
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为
,其范围为
,分别有五个级别:
,畅通;
,基本畅通;
,轻度拥堵;
,中度拥堵;
,严重拥堵.在晚高峰时段(
),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.
![]()
(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;
(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;
(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系
中,
、
分别为椭圆
的左、右焦点.设不经过焦点
的直线
与椭圆交于两个不同的点
、
,焦点
到直线
的距离为
.若直线
、
、
的斜率依次成等差数列,求
的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com