精英家教网 > 高中数学 > 题目详情
8.已知sin(π-α)=-$\frac{\sqrt{3}}{2}$,$\frac{3π}{2}$<α<2π,求cos($\frac{π}{3}$-α).

分析 由条件利用 诱导公式求得sinα的值,可得 cosα 的值,从而求得cos($\frac{π}{3}$-α)=cos$\frac{π}{3}$cosα+sin$\frac{π}{3}$sinα 的值.

解答 解:∵sin(π-α)=sinα=-$\frac{\sqrt{3}}{2}$,$\frac{3π}{2}$<α<2π,∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{1}{2}$,
∴cos($\frac{π}{3}$-α)=cos$\frac{π}{3}$cosα+sin$\frac{π}{3}$sinα=$\frac{1}{2}×\frac{1}{2}$+$\frac{\sqrt{3}}{2}$×(-$\frac{\sqrt{3}}{2}$)=-$\frac{1}{2}$.

点评 本题主要考查同角三角函数的基本关系、诱导公式、两角差的余弦公式的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知二次函数f(x)=ax2+2x+c(x∈R)的值域为[0,+∞),不等式$\frac{a}{{{a^2}+1}}+\frac{c}{{{c^2}+1}}≤λ$恒成立,则λ的取值范围是[1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.当x∈(2,3)时,不等式2x2-9x+m<0恒成立,则实数m的取值范围为(  )
A.m>9B.m=9C.m≤9D.m<9

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.用秦九韶算法求多项式f(x)=x6-5x5+6x4+x2+3x+2的值,当x=-2时,v3的值为(  )
A.-7B.-20C.-40D.-39

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数f(x)(x∈R)满足f(1)=1,f′(x)<$\frac{1}{2}$,则不等式f(x2)<$\frac{x^2}{2}+\frac{1}{2}$的解集为(-∞,-1)∪(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.(1)已知各项不为0的等差数列{an}满足2a2-a72+2a12=0,数列{bn}是等比数列,且b7=a7,Tn表示数列{bn}的前n项积,求T13
(2)不等式(m2-2m-3)x2-(m-3)x-1<0的解集为R,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,在边长为1的正方形中,随机撒1000粒豆子,有180粒落到阴影部分,据此估计阴影部分的面积(  )
A.0.18B.0.16C.0.15D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=$\frac{\sqrt{3}}{{3}^{x}+\sqrt{3}}$,求f(x)+f(1-x)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知直线x-2y+4=0经过椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的顶点和焦点,则椭圆的标准方程为(  )
A.$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{16}$=1B.$\frac{{x}^{2}}{20}$+$\frac{{y}^{2}}{4}$=1C.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1D.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{4}$=1

查看答案和解析>>

同步练习册答案