精英家教网 > 高中数学 > 题目详情
18.已知二次函数f(x)=ax2+2x+c(x∈R)的值域为[0,+∞),不等式$\frac{a}{{{a^2}+1}}+\frac{c}{{{c^2}+1}}≤λ$恒成立,则λ的取值范围是[1,+∞).

分析 先根据二次函数的值域求出a,c的关系,结合基本不等式的性质从而求出λ的范围.

解答 解:∵二次函数f(x)=ax2+2x+c(x∈R)的值域为[0,+∞),
∴$\left\{\begin{array}{l}{a>0}\\{△=4-4ac=0}\end{array}\right.$,∴a>0,a=$\frac{1}{c}$,
∴$\frac{a}{{a}^{2}+1}$+$\frac{c}{{c}^{2}+1}$=$\frac{a}{{a}^{2}+1}$+$\frac{\frac{1}{a}}{\frac{1}{{a}^{2}}+1}$=$\frac{2a}{{a}^{2}+1}$=$\frac{2}{a+\frac{1}{a}}$≤$\frac{2}{2\sqrt{a•\frac{1}{a}}}$=1,
∴λ≥1,
故答案为:[1,+∞).

点评 本题考查了二次函数的性质,考查基本不等式的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.《中华人民共和国道路交通安全法》规定:车辆驾驶员血液酒精浓度在20-80mg/100ml(不含80)之间,属于酒后驾车;在80mg/100ml(含80)以上时,属醉酒驾车,对于酒后驾车和醉酒驾车的驾驶员公安机关将给予不同程度的处罚.
某市公安局交通管理部门在某路段的一次拦查行动中,依法检查了250辆机动车,查出酒后驾车和醉酒驾车的驾驶员20人,下面图表是对这20人血液中酒精含量进行检查所得结果的数据表和频率分布直方图.
酒精含量(单位:mg/100ml)[20,30)[30,40)[40,50)[50,60)
人数34x1
酒精含量(单位:mg/100ml)[60,70)[70,80)[80,90)[90,100]
人数y3mn
(1)根据频率表和直方图分别求出x,y,m,n,并补充完整频率分布直方图;
(注:只需补全[40,50)与[70,80)两段,其他段的已经画好)
(2)从血液酒精浓度在[70,90)范围内的驾驶员中任取3人,求至多有1人属于醉酒驾车的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.曲线y=x2在点P处的切线的倾斜角为$\frac{π}{4}$,则点P的坐标为$(\frac{1}{2},\frac{1}{4})$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“x>0”是“$\frac{1}{x}$>2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的前n项和Sn=2n+2-4.
(1)求数列{an}的通项公式;
(2)设bn=an•log2an,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知角α的顶点在坐标原点,始边在x轴的正半轴上,其终边上有一点P(5,-12),则secα=$\frac{13}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设△ABC的内角A,B,C所对边的长分别为a,b,c,若a是b,c的等差中项,3sinA=5sinB,则角C=(  )
A.60°B.120°C.135°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知a>0,如果P=$\sqrt{a}$+$\sqrt{a+3}$,Q=$\sqrt{a+1}$+$\sqrt{a+2}$,则(  )
A.P>QB.P<Q
C.P=QD.P与Q无法比较大小

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知sin(π-α)=-$\frac{\sqrt{3}}{2}$,$\frac{3π}{2}$<α<2π,求cos($\frac{π}{3}$-α).

查看答案和解析>>

同步练习册答案