精英家教网 > 高中数学 > 题目详情
16.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=$2{x^2}+\frac{1}{x}-x$,则f(x)=$\left\{{\begin{array}{l}{-2{x^2}+\frac{1}{x}-x}&{\;}&{x>0}\\ 0&{\;}&{x=0}\\{2{x^2}+\frac{1}{x}-x}&{\;}&{x<0}\end{array}}\right.$.

分析 由题意得f(0)=0,由x<0时f(x)的解析式,结合函数的奇偶性求出x>0时f(x)的解析式.

解答 解:∵f(x)是定义在R上的奇函数,
∴f(0)=0;
又∵x<0时,f(x)=$2{x^2}+\frac{1}{x}-x$,f(-x)=-f(x),
∴x>0时,-x<0,f(x)=-f(-x)=-2x2+$\frac{1}{x}$-x;
综上,f(x)=$\left\{{\begin{array}{l}{-2{x^2}+\frac{1}{x}-x}&{\;}&{x>0}\\ 0&{\;}&{x=0}\\{2{x^2}+\frac{1}{x}-x}&{\;}&{x<0}\end{array}}\right.$.
故答案为:$\left\{{\begin{array}{l}{-2{x^2}+\frac{1}{x}-x}&{\;}&{x>0}\\ 0&{\;}&{x=0}\\{2{x^2}+\frac{1}{x}-x}&{\;}&{x<0}\end{array}}\right.$.

点评 本题考查了利用函数的奇偶性求函数解析式的问题,解题时应注意题目中定义在R上的奇函数即f(0)=0,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知等差数列{an}满足(a1+a2)+(a2+a3)+…(an+an+1)=2n(n+1)(n∈N*).
(1)求数列{an}的通项公式;
(2)设bn=$\frac{{a}_{n}{a}_{n+1}}{2}$,求证:$\frac{1}{{b}_{1}}$+$\frac{1}{{b}_{2}}$+…+$\frac{1}{{b}_{n}}$<1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.某宾馆有客房200间,每间客房租金200元/天,天天客满,该宾馆提高服务质量后对房租实行上调,如果租金增加20元/天,客房出租将减少10间,若不考虑其他因素,宾馆将房间租金提高到多少时,1天的租金收入最高,最高为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下列几组对象可以构成集合的是(  )
A.充分接近π的实数的全体B.善良的人
C.A校高一(1)班所有聪明的学生D.B单位所有身高在1.75 cm以上的人

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知数列{an}满足a1=1,a2=5,n≥2时,an+1=5an-6an-1
(1)证明:数列{an+1-3an}为等比数列,并求数列{an}的通项公式;
(2)试比较an与2n2+1的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=2sinxcosx+cos2x-sin2x(x∈R).
(1)求f(x)的最小正周期和最大值;
(2)若θ为锐角,且$f({θ+\frac{π}{8}})=\frac{{\sqrt{2}}}{3}$,求tan2θ的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在数1和e2之间插入n个实数x1,x2,x3,…,xn,使得这n+2个数构成递增的等比数列,将这插入的n个数的乘积记作Tn,再令an=lnTn,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}•({a_n}+2)}}$,求数列{bn}的前n项和Sn
(3)若对任意n∈N*,都有Sn$<\frac{m}{60}$成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设正数数列{an}的前n项和为Sn,且存在正数t,使得对所有的正整数n,都有$\sqrt{t{S_n}}=\frac{{t+{a_n}}}{2}$,则Sn=tn2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.定义在区间[a,b]上的连续函数y=f(x),如果?ξ∈[a,b],使得f(b)-f(a)=f′(ξ)(b-a),则称ξ为区间[a,b]上的“中值点”.下列函数:①f(x)=3x+2;②f(x)=x2;③f(x)=ln(x+1);④$f(x)={({x-\frac{1}{2}})^3}$中,在区间[0,1]上“中值点”多于1个的函数是(  )
A.①④B.①③C.②④D.②③

查看答案和解析>>

同步练习册答案