精英家教网 > 高中数学 > 题目详情
8.在数1和e2之间插入n个实数x1,x2,x3,…,xn,使得这n+2个数构成递增的等比数列,将这插入的n个数的乘积记作Tn,再令an=lnTn,n∈N*
(1)求数列{an}的通项公式;
(2)设bn=$\frac{1}{{{a_n}•({a_n}+2)}}$,求数列{bn}的前n项和Sn
(3)若对任意n∈N*,都有Sn$<\frac{m}{60}$成立,求实数m的取值范围.

分析 (1)由1,x1,x2,•…•xn,e2构成等比数列,Tn=x1x2•…•xn=en,进而得出.
(2)利用“裂项求和”方法即可得出.
(3)利用数列的单调性即可得出.

解答 解:(1)∵1,x1,x2,•…•xn,e2构成等比数列,
又Tn=x1x2•…•xn=en
∴an=lnTn=lnen=n.
(2)∴${S_n}={b_1}+{b_2}+…+{b_n}=\frac{1}{2}[{({1-\frac{1}{3}})+({\frac{1}{2}-\frac{1}{4}})+…+({\frac{1}{n}-\frac{1}{n+2}})}]$
=$\frac{1}{2}({1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2}})=\frac{1}{2}({\frac{3}{2}-\frac{1}{n+1}-\frac{1}{n+2}})=\frac{1}{2}[{\frac{3}{2}-\frac{2n+3}{{({n+1})({n+2})}}}]$.
(3)∵Sn=$\frac{3}{4}$-$\frac{2n+3}{2(n+1)(n+2)}$$<\frac{3}{4}$,
∴对任意n∈N*,都有Sn$<\frac{m}{60}$成立$?\frac{m}{60}≥\frac{3}{4}?m≥45$.
故m∈[45,+∞).

点评 本题考查了等比数列的通项公式及其性质、“裂项求和”方法、数列的单调性,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.某商店将进价为40元的商品按50元一件销售,一个月恰好卖500件,而价格每提高1元,就会少卖10个,商店为使该商品利润最大,应将每件商品定价为(  )
A.50元B.60元C.70元D.100元

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若P(-4,3)是角α终边上一点,则$\frac{cos(α-3π)•sin(-α)}{si{n}^{2}(π-α)}$的值为(  )
A.$-\frac{4}{3}$B.$\frac{4}{3}$C.$\frac{3}{4}$D.$-\frac{3}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知f(x)是定义在R上的奇函数,当x<0时,f(x)=$2{x^2}+\frac{1}{x}-x$,则f(x)=$\left\{{\begin{array}{l}{-2{x^2}+\frac{1}{x}-x}&{\;}&{x>0}\\ 0&{\;}&{x=0}\\{2{x^2}+\frac{1}{x}-x}&{\;}&{x<0}\end{array}}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.关于x的方程$\sqrt{1-{x}^{2}}$=kx+2有唯一实数解,则实数k的取值范围是(  )
A.$\left\{{±\sqrt{3}}\right\}$B.(-∞,-2)∪(2,+∞)C.(-2,2)D.$({-∞,-2})∪\left\{{±\sqrt{3}}\right\}∪({2,+∞})$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设命题p:|2x-3|<1;命题q:lg2x-(2t+l)lgx+t(t+l)≤0,
(1)若命题q所表示不等式的解集为A={x|l0≤x≤100},求实数t的值;
(2)若?p是?q的必要不充分条件,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知f(x)=sin(x+θ)+$\sqrt{3}$cos(x+θ)的一条对称轴为y轴,且θ∈(0,π).求θ=$\frac{π}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.当|$\overrightarrow a$|=|$\overrightarrow b$|≠0且$\overrightarrow a$、$\overrightarrow b$不共线时,$\overrightarrow a$+$\overrightarrow b$与$\overrightarrow a$-$\overrightarrow b$的关系是(  )
A.平行B.垂直C.相交但不垂直D.相等

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1,(a>b>0)$的两焦点F1,F2,过F2作垂直于x轴的直线与椭圆相交,交点分别是P1,P2,△F1P1P2为正三角形,椭圆的离心率为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{3}}}{4}$D.$\sqrt{3}$

查看答案和解析>>

同步练习册答案