精英家教网 > 高中数学 > 题目详情
已知函数f(x)=
x,x∈P
-x,x∈M
其中集合P,M是非空数集.设.f(P)={y|y=f(x),x∈P},f(M)={y|y=f(x),x∈M}
(I)若 P=[l,3],M=(-∞,-2],求f(P)∪f(M);
(II)若P∩M=φ,a函数f(x)是定义在R上的单调递增函数,求集合P,M
(III)判断命题“若P∪M≠R,则.f(P)∪f(M)≠R”的真假,并说明理由.
(I)∵P=[1,3],M=(-∞,-2)
∴f(P)=[1,3],f(M)=[2,+∞)
∴f(P)∪f(M)=[1,+∞)(3分)
(II)因为函数f(x)是R上的增函数,且f(0)=0
所以当x<0时,f(x)<0,所以(-∞,0)⊆P
同理可知,(0,+∞)⊆P
因为P∩M=∅
所以P={x|x≠0}.M={0}(6分)
(III)原命题为真命题,理由如下:(8分)
假设存在P,M且P∪M≠R,则有f(P)∪f(M)=R
因为P∪M≠R
若0∉P∪M
则0∉f(P)∪f(M)
∴f(P)∪f(M)≠R与f(P)∪f(M)=R矛盾
若存在x0∉P∪M且则x0∉P∪M且x0≠0,则x0∉f(P),-x0∉f(M)
因为f(p)∪f(M)=R
所以-x0∈f(P),x0∈f(M)
所以-x0∈P,-x0∈M
由函数的定义可得,-x0=x0即x0=0与x0≠0矛盾
所以命题“若P∪M≠R,则f(P)∪f(M)≠R为真命题(14分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分图象如图所示,则f(x)的解析式是(  )
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•深圳一模)已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:上海模拟 题型:解答题

已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中数学 来源:深圳一模 题型:解答题

已知函数f(x)=
1
3
x3+bx2+cx+d
,设曲线y=f(x)在与x轴交点处的切线为y=4x-12,f′(x)为f(x)的导函数,且满足f′(2-x)=f′(x).
(1)求f(x);
(2)设g(x)=x
f′(x)
 , m>0
,求函数g(x)在[0,m]上的最大值;
(3)设h(x)=lnf′(x),若对一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求实数t的取值范围.

查看答案和解析>>

同步练习册答案