精英家教网 > 高中数学 > 题目详情
16、如图,四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为直角梯形,∠ABC=∠BAD=90°,AD>BC.E,F分别为棱AB,PC的中点.
(Ⅰ)求证:PE⊥BC;
(Ⅱ)求证:EF∥平面PAD;
分析:(Ⅰ)由PA⊥平面ABCD,得PA⊥BC,又BC⊥AB,由线面垂直的判定证明BC⊥平面PAB,从而有BC⊥PE;
(Ⅱ)由FG∥平面PAD,EG∥平面PAD,平面EFG∥平面PAD,EF∥平面PAD.
解答:证明:解(Ⅰ)∵PA⊥平面ABCD,BC?平面ABCD∴PA⊥BC
∵∠ABC=90°,
∴BC⊥AB,
∵PA∩AB=A
∴BC⊥平面PAB
∵E为AB中点,∴PE?平面PAB.
∴BC⊥PE.

(Ⅱ)证明:取CD中点G,连接FG,EG,
∵F为PC中点,
∴FG∥PD
∵FG?平面PAD,PD?平面PAD
∴FG∥平面PAD;
同理,EG∥平面PAD
∵FG∩EG=G,(没有扣1分)平面EFG∥平面PAD
∴EF∥平面PAD.
点评:本题主要通过线线、线面、面面之间的平行关系的转化和垂直关系的关系,来考查其判定定理和性质定理.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,PA⊥底面ABCD,AB⊥AD,AC⊥CD,∠ABC=60°,PA=AB=BC,
E是PC的中点.求证:
(Ⅰ)CD⊥AE;
(Ⅱ)PD⊥平面ABE.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AB∥CD,∠DAB=60°,AB=AD=2CD=2,侧面PAD⊥底面ABCD,且△PAD为等腰直角三角形,∠APD=90°,M为AP的中点.
(1)求证:AD⊥PB;
(2)求三棱锥P-MBD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD的底面ABCD是矩形,AB=2,BC=
2
,且侧面PAB是正三角形,平面PAB⊥平面ABCD.
(1)求证:PD⊥AC;
(2)在棱PA上是否存在一点E,使得二面角E-BD-A的大小为45°,若存在,试求
AE
AP
的值,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,点F是PB中点.
(Ⅰ)若E为BC中点,证明:EF∥平面PAC;
(Ⅱ)若E是BC边上任一点,证明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直线PA与平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,四棱锥P-ABCD,PA⊥平面ABCD,ABCD是直角梯形,DA⊥AB,CB⊥AB,PA=2AD=BC=2,AB=2
2
,设PC与AD的夹角为θ.
(1)求点A到平面PBD的距离;
(2)求θ的大小;当平面ABCD内有一个动点Q始终满足PQ与AD的夹角为θ,求动点Q的轨迹方程.

查看答案和解析>>

同步练习册答案