精英家教网 > 高中数学 > 题目详情
如图,已知四棱锥S-ABCD中,△SAD是边长为a的正三角形,平面SAD⊥平面ABCD,四边形ABCD为菱形,∠DAB=60°,P为AD的中点,Q为SB的中点.
(Ⅰ)求证:PQ平面SCD;
(Ⅱ)求二面角B-PC-Q的大小.
精英家教网
证明:(1)证明取SC的中点R,连QR,DR.
由题意知:PDBC且PD=
1
2
BC;
QRBC且QP=
1
2
BC,∴QRPD且QR=PD.∴PQDR,又PQ?面SCD,∴PQ面SCD.(6分)
(2)以P为坐标原点,PA为x轴,PB为y轴,PS为z轴建立空间直角坐标系,
则S(0,0,
3
2
a),B(0,
3
2
a,0),C(-a,
3
2
a,0),Q(0,
3
4
a,
3
4
a).
面PBC的法向量为
PS
=(0,0,
3
2
a),设
n
=(x,y,z)
为面PQC的一个法向量,
n
PQ
=0
n
PC
=0
?
3
4
ay+
3
4
az=0
-ax+
3
4
ay=0
?
n
=(
3
2
3
,-
3
)

cos<
n
PS
>=
-
3
2
a
3
2
33
2
=-
2
11
=-
2
11
11

∴二面角B-PC-Q的大小为arccos
2
11
11
.(12分)
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,已知四棱锥S-ABCD的底面ABCD是边长为1的正方形,SA⊥平面ABCD,SA=2,E是侧棱SC上的一点.
(1)求证:平面EBD⊥平面SAC;
(2)求四棱锥S-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥S-ABCD的底面是边长为4的正方形,S在底面上的射影O落在正方形ABCD内,SO的长为3,O到AB,AD的距离分别为2和1,P是SC的中点.
(Ⅰ)求证:平面SOB⊥底面ABCD;
(Ⅱ)设Q是棱SA上的一点,若
AQ
=
3
4
AS
,求平面BPQ与底面ABCD所成的锐二面角余弦值的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知四棱锥S-A BCD是由直角梯形沿着CD折叠而成,其中SD=DA=AB=BC=l,AS∥BC,AB⊥AD,且二面角S-CD-A的大小为120°.
(Ⅰ)求证:平面ASD⊥平面ABCD;
(Ⅱ)设侧棱SC和底面ABCD所成角为θ,求θ的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•湖北模拟)如图,已知四棱锥S-ABCD中,△SAD是边长为a的正三角形,平面SAD⊥平面ABCD,四边形ABCD为菱形,∠DAB=60°,P为AD的中点,Q为SB的中点.
(Ⅰ)求证:PQ∥平面SCD;
(Ⅱ)求二面角B-PC-Q的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2010•江西模拟)(如图)已知四棱锥S-ABCD的底面ABCD是菱形,将面SAB,SAD,ABCD 展开成平面后的图形恰好为一正三角形S'SC.
(1)求证:在四棱锥S-ABCD中AB⊥SD.
(2)若AC长等于6,求异面直线AB与SC之间的距离.

查看答案和解析>>

同步练习册答案