精英家教网 > 高中数学 > 题目详情

如图,在四棱锥中,平面平面.
(1)证明:平面;
(2)求二面角的大小

(1)详见解析;(2)二面角的大小是

解析试题分析:(1)求证:平面,证明线面垂直,先证线线垂直,即证线和平面内两条相交直线垂直,由已知可得,只需证明,或,由已知平面平面,只需证明,就得平面,即,而由已知,在直角梯形中,易求,从而满足,即得,问题得证;(2)求二面角的大小,可用传统方法,也可用向量法,用传统方法,关键是找二面角的平面角,可利用三垂线定理来找,但本题不存在利用三垂线定理的条件,因此利用垂面法,即作,与交于点,过点,与交于点,连结,由(1)知,,则,,所以是二面角的平面角,求出的三条边,利用余弦定理,即可求出二面角的大小,用向量法,首先建立空间坐标系,先找三条两两垂直的直线作为坐标轴,观察几何图形可知,以为原点,分别以射线轴的正半轴,建立空间直角坐标系,写出个点坐标,设出设平面的法向量为,平面的法向量为,求出它们的一个法向量,利用法向量的夹角与二面角的关系,即可求出二面角的大小.
(1)在直角梯形中,由得,,由,则,即,又平面平面,从而平面,所以,又,从而平面
(2)方法一:作,与交于点,过点,与交于点,连结,由(1)知,,则,,所以是二面角的平面角,在直角梯形中,由,得,又平面平面

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

已知点与点,则线段之间的距离是             

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,平面ABCD⊥平面ADEF,其中ABCD为矩形,ADEF为梯形,AF∥DE,AF⊥FE,AF=AD=2DE=2,M为AD的中点.

(1)证明:MF⊥BD;
(2)若二面角A-BF-D的平面角的余弦值为,求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在棱长为2的正方体中,分别是棱的中点,点分别在棱,上移动,且.
时,证明:直线平面
是否存在,使平面与面所成的二面角为直二面角?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四边形是正方形,平面分别为的中点.

(1)求证:平面
(2)求平面与平面所成锐二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥中,底面是直角梯形,,
平面平面,若,,且

(1)求证:平面; 
(2)设平面与平面所成二面角的大小为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(2013•湖北)如图,AB是圆O的直径,点C是圆O上异于A,B的点,直线PC⊥平面ABC,E,F分别是PA,PC的中点.
(1)记平面BEF与平面ABC的交线为l,试判断直线l与平面PAC的位置关系,并加以证明;
(2)设(1)中的直线l与圆O的另一个交点为D,且点Q满足.记直线PQ与平面ABC所成的角为θ,异面直线PQ与EF所成的角为α,二面角E﹣l﹣C的大小为β.求证:sinθ=sinαsinβ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是以为直径的半圆上异于的点,矩形所在的平面垂直于半圆所在的平面,且.

(1)求证:
(2)若异面直线所成的角为,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

已知l∥,且l的方向向量为(2, m, 1), 平面的法向量为(1,, 2), 则m=       .

查看答案和解析>>

同步练习册答案