精英家教网 > 高中数学 > 题目详情
设函数f(x)=ln(x+a)+2x2
(1)若当x=-1时,f(x)取得极值,求a的值;
(2)在(1)的条件下,方程ln(x+a)+2x2-m=0恰好有三个零点,求m的取值范围;
(3)当0<a<1时,解不等式f(2x-1)<lna.
分析:(1)把-1代入导函数对应的方程即可.
(2)转化为两个函数有三个不同的交点即可,y=m须位于极大值和极小值之间.
(3)先把lna转化为f(0),在利用条件把变量转化到同一单调区间内,利用单调性解题即可.
解答:解:∵f(x)=ln(x+a)+2x2.∴f'(x)=
1
x+a
+4x
(1)由f'(-1)=
1
-1+a
-4=0⇒a=
5
4

所以a的值为
5
4


(2)由(1)得f'(x)=
1
x+
5
4
+4x=
(4x+1)(x+1)
x+
5
4
,又因为x+
5
4
>0,
所以f'(x)>0⇒x>-
1
4
,f'(x)<0⇒-
5
4
x<-1,
故f(x)的极大值为f(-
1
4
)=
1
4
,极小值为f(-1)=2+ln
1
4

ln(x+a)+2x2-m=0恰好有三个零点须有2+ln
1
4
<m<
1
4

故m的取值范围是(2+ln
1
4
1
4
).

(3)因为f'(x)=
1
x+a
+4x=
4x2+4ax+1
x+a

且f'(x)=0⇒x1=
-a+
a2+1
2
>0,x2=
-a-
a2+1
2
<-a,
故f(x)在(-a,0)上递减.又f(0)=lna.所以f(2x-1)<lna⇒2x-1>0⇒x>
1
2

所以不等式f(2x-1)<lna的解集是{x|x>
1
2
}.
点评:本题考查利用极值求对应参数的值.可导函数的极值点一定是导数为0的点,但导数为0的点不一定是极值点.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2
(I)若当x=-1时,f(x)取得极值,求a的值,并讨论f(x)的单调性;
(II)若f(x)存在极值,求a的取值范围,并证明所有极值之和大于ln
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)设函数f(x)=ln(1+x)-
2x
x+2
,证明:当x>0时,f(x)>0;
(Ⅱ)从编号1到100的100张卡片中每次随机抽取一张,然后放回,用这种方式连续抽取20次,设抽得的20个号码互不相同的概率为P.证明:P<(
9
10
)
19
1
e2

查看答案和解析>>

科目:高中数学 来源: 题型:

(2009•杨浦区一模)设函数f(x)=ln(x2-x-6)的定义域为集合A,集合B={x|
5x+1
>1}.请你写出一个一元二次不等式,使它的解集为A∩B,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=ln(x+a)+x2(a>
2
)

(1)若a=
3
2
,解关于x不等式f(e
x
-
3
2
)<ln2+
1
4

(2)证明:关于x的方程2x2+2ax+1=0有两相异解,且f(m)和f(n)分别是函数f(x)的极小值和极大值(m,n为该方程两根,且m>n).

查看答案和解析>>

同步练习册答案