精英家教网 > 高中数学 > 题目详情
必做题, 本小题10分.解答时应写出文字说明、证明过程或演算步骤.
在三棱锥ABCD中,平面DBC⊥平面ABC,△ABC为正三角形, AC=2,DC=DB=
(1)求DC与AB所成角的余弦值;
(2)在平面ABD上求一点P,使得CP⊥平面AB              D.

(1)
(2)(
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,棱锥P—ABCD的底面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=.

(Ⅰ)求证:BD⊥平面PAC
(Ⅱ)求二面角PCDB的大小;
(Ⅲ)求点C到平面PBD的距离.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在长方体中,,且.

(Ⅰ)求证:对任意,总有
(Ⅱ)若,求二面角的余弦值;
(Ⅲ)是否存在,使得在平面上的射影平分?若存在,求出的值,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本题满分12分)
如图,在直三棱柱中,的中点.

(Ⅰ)在线段上是否存在一点,使得⊥平面?若存在,找出点的位置幷证明;若不存在,请说明理由;
(Ⅱ)求平面和平面所成角的大小

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,在四棱锥P-ABCD中,底面ABCD是矩形,M、N分别为PA、BC的中点, PD⊥平面ABCD,且PD=AD=,CD=1.
(Ⅰ)证明:MN∥平面PCD;
(Ⅱ)证明:MC⊥BD;
(Ⅲ)求二面角A—PB—D的余弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)
如图,正方形ADEF所在平面和等腰梯形所在平面ABCD垂直,已知BC=2AD=4,
(I)求证:面ABF;
(II)求异面直线BE与AF所成的角;
(III)求该几何体的表面积。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

球的半径扩大为原来的2倍,它的体积扩大为原来的              倍。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题12分)
如图,正方体ABCD—A1B1C1D1中,M、N分别为AB、BC的中点.
(Ⅰ)求证:平面B1MN⊥平面BB1D1D;
(II)当点P为棱DD1中点时,求直线MB1与平面A1C1P所成角的正弦值;
            

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

对于不重合的两个平面α与β,给定下列条件:
①存在平面γ,使得α、β都平行于γ;
②存在平面γ,使得α、β都垂直于γ;
③α内有不共线的三点到β的距离相等;
④存在异面直线l,m,使得l//α,l//β,m//α,m//β;
A.1个B.2个C.3个D.4个

查看答案和解析>>

同步练习册答案