已知椭圆C1:
和动圆C2:
,直线
与C1和C2分别有唯一的公共点A和B.
(I)求
的取值范围;
(II )求|AB|的最大值,并求此时圆C2的方程.
(Ⅰ)[1,2)(Ⅱ)1,x2+y2=2
解析试题分析:(Ⅰ)将直线
方程与椭圆方程联立消去
整理成关于
的一元二次方程,因为直线与椭圆只有一个公共点,则判别式为0,列出关于m,k的方程,再由直线
与圆只有一个公共点知,直线
与圆相切,利用圆心到直线的距离等于半径找出r,m,k关系,将这两个关于m,k的方程联立,消去m,将r表示成k的函数,利用函数求值域的方法,求出r范围;(Ⅱ)由(Ⅰ)可求得A,B两点的横坐标,利用弦长公式将AB用r表示出来,利用函数求最值的方法,求出|AB|的最大值及取最大值时的r值,从而写出圆的方程.
试题解析:(Ⅰ)由![]()
,得(1+4k2)x2+8kmx+4(m2﹣1)=0.
由于l与C1有唯一的公共点A,故△1=64k2m2﹣16(1+4k2)(m2﹣1)=0, 2分
从而m2=1+4k2 ①
由
,得(1+k2)x2+2kmx+m2﹣r2=0.
由于l与C2有唯一的公共点B,故△2=4k2m2﹣4(1+k2)(m2﹣r2)=0, 4分
从而m2=r2(1+k2) ②
由①、②得k2=
.
由k2≥0,得1≤r2<4,所以r的取值范围是[1,2). 6分
(Ⅱ)设A(x1,y1),B(x2,y2),由(Ⅰ)的解答可知
x1=﹣
=﹣
,x2=﹣
=﹣
.
|AB|2=(1+k2)(x2﹣x1)2=(1+k2)•
=
•k2•(4﹣r2)2
=
•(4﹣r2)2=
, 9分
所以|AB|2=5﹣(r2+
)(1≤r<2).
因为r2+
≥2×2=4,当且仅当r=
时取等号,
所以当r=
时,|AB|取最大值1,此时C2的方程为x2+y2=2. 12分
考点:直线与椭圆的位置关系,直线与圆的位置关系,最值问题,转化与化归思想,运算求解能力
科目:高中数学 来源: 题型:解答题
已知抛物线C:y2=2x,O为坐标原点,经过点M(2,0)的直线l交抛物线于A,B两点,P为抛物线C上一点.
(Ⅰ)若直线l垂直于x轴,求|
﹣
|的值;
(Ⅱ)求三角形OAB的面积S的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
定义:我们把椭圆的焦距与长轴的长度之比即
,叫做椭圆的离心率.若两个椭圆的离心率
相同,称这两个椭圆相似.
(1)判断椭圆
与椭圆
是否相似?并说明理由;
(2)若椭圆![]()
与椭圆
相似,求
的值;
(3)设动直线
与(2)中的椭圆
交于
两点,试探究:在椭圆
上是否存在异于
的定点
,使得直线
的斜率之积为定值?若存在,求出定点
的坐标;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在平面直角坐标系
中,
分别是椭圆
的左、右焦点,顶点
的坐标为
,连结
并延长交椭圆于点A,过点A作
轴的垂线交椭圆于另一点C,连结
.
(1)若点C的坐标为
,且
,求椭圆的方程;
(2)若
求椭圆离心率e的值.![]()
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知椭圆C:
=1(a>0,b>0)的离心率与双曲线
=1的一条渐近线的斜率相等以原点为圆心,椭圆的短半轴长为半径的圆与直线sin
·x+cos
·y-l=0相切(
为常数).
(1)求椭圆C的方程;
(2)若过点M(3,0)的直线与椭圆C相交TA,B两点,设P为椭圆上一点,且满足
(O为坐标原点),当
时,求实数t取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,双曲线的中心在坐标原点,焦点在x轴上,F1,F2分别为左、右焦点,双曲线的左支上有一点P,∠F1PF2=
,且△PF1F2的面积为2
,双曲线的离心率为2,求该双曲线的标准方程.![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com