分析 由条件利用同角三角函数的基本关系求得cosα、cos(α-β)的值,可得tanα,tan(α-β)的值,再利用两角和差的正切公式求得tanβ=tan[(α-(α-β)]的值.
解答 解:∵锐角α,β满足$sinα=\frac{{\sqrt{5}}}{5},sin(α-β)=-\frac{{\sqrt{10}}}{10}$,
∴cosα=$\sqrt{{1-sin}^{2}α}$=$\frac{2\sqrt{5}}{5}$,cos(α-β)=$\sqrt{{1-sin}^{2}(α-β)}$=$\frac{3\sqrt{10}}{10}$,
∴tanα=$\frac{sinα}{cosα}$=$\frac{1}{2}$,tan(α-β)=$\frac{sin(α-β)}{cos(α-β)}$=-$\frac{1}{3}$,
∴tanβ=tan[(α-(α-β)]=$\frac{tanα-tan(α-β)}{1+tanα•tan(α-β)}$=$\frac{\frac{1}{2}+\frac{1}{3}}{1-\frac{1}{2}•\frac{1}{3}}$=1,
故β=$\frac{π}{4}$,
故答案为:$\frac{π}{4}$.
点评 本题主要考查同角三角函数的基本关系、两角和差的正切公式,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 0 | D. | 1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | {1,2} | B. | {3,4} | C. | {1,2,3,4} | D. | ∅ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $-\frac{1}{2}$ | D. | $-\frac{{\sqrt{3}}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}或2$ | B. | 2 | C. | $\frac{1}{2}$ | D. | $\frac{1}{2}或5$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com