精英家教网 > 高中数学 > 题目详情
11.已知点P(1,-2)在抛物线C:y2=2px(p>0)上.
(1)求抛物线C的方程及其准线方程;
(2)若过抛物线C焦点F的直线l与抛物线C相交于A,B两个不同点,求|AB|的最小值.

分析 (1)根据点P(1,-2)在抛物线C:y2=2px(p>0)上,可得p值,即可求抛物线C的方程及其准线方程;
(2)设直线l的方程为:x+my-1=0,代入y2=4x,整理得,y2+4my-4=0,利用韦达定理和抛物线的定义知|AB|=4(m2+1)≥4,由此能求出|AB|的最小值.

解答 解:∵点P(1,-2)在抛物线C:y2=2px(p>0)上,
∴2p=4,解得:p=2,
∴抛物线C的方程为y2=4x,准线方程为x=-1;
(2)设直线l的方程为:x+my-1=0,
代入y2=4x,整理得,y2+4my-4=0
设A(x1,y1),B(x2,y2),
则y1,y2是上述关于y的方程的两个不同实根,所以y1+y2=-4m
根据抛物线的定义知:|AB|=x1+x2+2=(1-my1)+(1-my2)=4(m2+1)
∴|AB|=4(m2+1)≥4,
当且仅当m=0时,|AB|有最小值4.

点评 本题考查的知识点是抛物线的简单性质,考查弦的最小值的求法.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设数列{an}满足:a1=1,an+1=3an,n∈N*,数列{bn}满足b1=2,b4=31,且{bn-an}为等差数列.
(Ⅰ)求数列{an}和{bn}的通项公式;
(Ⅱ)求数列{bn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知$\overrightarrow{a}$=(0,1,-1),$\overrightarrow{b}$=(1,1,0),若$\overrightarrow{a}$+λ$\overrightarrow{b}$与2$\overrightarrow{a}$-$\overrightarrow{b}$共线,则实数λ=(  )
A.-2B.-$\frac{1}{2}$C.$\frac{1}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知函数f(x)=sin2x+2cos2x(x∈R),则f($\frac{π}{6}$)=$\frac{3+\sqrt{3}}{2}$,函数f(x)的最大值是1+$\sqrt{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知命题p:?x0∈R,3${\;}^{{x}_{0}}$=5,则¬p为?x∈R,3x≠5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知锐角α,β满足$sinα=\frac{{\sqrt{5}}}{5},sin(α-β)=-\frac{{\sqrt{10}}}{10}$,则β等于$\frac{π}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.若$cos(2π-α)=\frac{{-\sqrt{5}}}{3}$且$α∈(π,\frac{3π}{2})$,则sin(π+α)=(  )
A.$-\frac{{\sqrt{5}}}{3}$B.$-\frac{1}{3}$C.$±\frac{2}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知x,y满足$\left\{\begin{array}{l}x-y+1≥0\\ x-2y≤0\\ x+my-2≤0\end{array}\right.$若z=x+y的最大值为$\frac{3}{2}$,则常数m=2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=4sinxcos(x+$\frac{π}{6}$)+1.
(1)求函数f(x)的最小正周期;
(2)当x∈[-$\frac{7π}{12}$,0]时,求函数f(x)的取值范围.

查看答案和解析>>

同步练习册答案