精英家教网 > 高中数学 > 题目详情
3.若$cos(2π-α)=\frac{{-\sqrt{5}}}{3}$且$α∈(π,\frac{3π}{2})$,则sin(π+α)=(  )
A.$-\frac{{\sqrt{5}}}{3}$B.$-\frac{1}{3}$C.$±\frac{2}{3}$D.$\frac{2}{3}$

分析 利用诱导公式,同角三角函数基本关系式可求cosα,sinα的值,利用诱导公式化简所求后即可代入求解.

解答 解:∵$cos(2π-α)=\frac{{-\sqrt{5}}}{3}$且$α∈(π,\frac{3π}{2})$,
∴cosα=-$\frac{\sqrt{5}}{3}$,sinα=-$\sqrt{1-co{s}^{2}α}$=-$\frac{2}{3}$,
∴sin(π+α)=-sinα=$\sqrt{1-co{s}^{2}α}$=$\sqrt{1-\frac{5}{9}}$=$\frac{2}{3}$.
故选:D.

点评 本题主要考查了诱导公式,同角三角函数基本关系式在三角函数化简求值中的应用,考查了转化思想和计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=mx2-2mx+n(m>0)在区间[1,3]上的最大值为5,最小值为1,设$g(x)=\frac{f(x)}{x}$.
(Ⅰ)求m、n的值;
(Ⅱ)证明:函数g(x)在[$\sqrt{n}$,+∞)上是增函数;
(Ⅲ)若函数F(x)=g(2x)-k•2x在x∈[-1,1]上有零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.计算下列定积分:
(1)${∫}_{0}^{5}4xdx$;
(2)${∫}_{0}^{5}({x}^{2}-2x)$dx;
 (3)${∫}_{1}^{2}$($\sqrt{x}$-1)dx;
(4)${∫}_{-1}^{3}$(3x2-2x+1)dx;
(5)${∫}_{1}^{2}$(x-$\frac{1}{x}$)dx;
(6)${∫}_{1}^{2}$$\frac{1}{{x}^{2}}$dx;
(7)${∫}_{0}^{π}$cosxdx;
(8)${∫}_{-π}^{0}$sinxdx.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点P(1,-2)在抛物线C:y2=2px(p>0)上.
(1)求抛物线C的方程及其准线方程;
(2)若过抛物线C焦点F的直线l与抛物线C相交于A,B两个不同点,求|AB|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知函数$f(x)=2sin\frac{πx}{4}$,如果存在实数x1,x2,使得对任意的实数x都有f(x1)≤f(x)≤f(x2),则|x1-x2|最小值是4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.如图所示是一个四棱锥的三视图,则该几何体的体积为(  )
A.3B.4C.6D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在△ABC中,$AB=AC=1,\overrightarrow{AM}=\overrightarrow{MB},\overrightarrow{BN}=\overrightarrow{NC},\overrightarrow{CM•}\overrightarrow{AN}=-\frac{1}{4}$,则∠ABC=(  )
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{4}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设$f(x)=2cosx(\sqrt{3}sinx-cosx)+2$.
(Ⅰ)求f(x)的单调递增区间;
(Ⅱ)在△ABC中,$BC=\sqrt{6},sinC=2sinB$,若f(x)的最大值为f(A),求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},则函数y=loga|x|的图象是(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案