精英家教网 > 高中数学 > 题目详情
14.设f(x)为奇函数,x∈(0,+∞)时,f(x)=x-1,则使f(x)>0成立的实数x的取值范围是(  )
A.x>1B.x>1且-1<x<0C.-1<x<0D.x>1或-1<x<0

分析 由条件求得f(x)的解析式,数形结合求得使f(x)>0成立的实数x的取值范围.

解答 解:设x<0,则-x>0,∴f(-x)=-f(x)=-x-1,∴f(x)=x+1,
综上可得,f(x)=$\left\{\begin{array}{l}{x-1,x>0}\\{x+1,x<0}\\{0,x=0}\end{array}\right.$,如图所示:.
故由f(x)>0,可得x>1 或-1<x<0,
故选:B.

点评 本题主要考查函数的奇偶性的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.若${∫}_{0}^{x}$a2da=x2(x>0),则${∫}_{1}^{x}$|a-2|da等于(  )
A.$\frac{1}{2}$B.1C.$\frac{3}{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知sinx=2cosx,则$\frac{5sinx-cosx}{2sinx+cosx}$=(  )
A.$\frac{6}{5}$B.$\frac{9}{5}$C.$\frac{8}{5}$D.$\frac{7}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2,<$\overrightarrow{a}$,$\overrightarrow{b}$>=$\frac{π}{6}$,求:
(1)$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)(2$\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{b}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知cosα=-$\frac{3}{5}$,α∈($\frac{π}{2}$,π),求cos(α+$\frac{π}{6}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.为营造良好生活环境,上海政府致力于城市绿化,据统计从2000年以来城市的绿化面积每两年均按5%的比例增长,已知2008年底全是绿化积为1430平方公里,若保持这种增长势头,到2016年底上海市的绿化总面积将达到1738.2平方公里(精确到0.1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知全集U={x|x2-2x-3≤0},集合M={y|x2+y2=1},则∁UM=(  )
A.(-∞,-1)∪(1,+∞)B.(1,3]C.[-1,1]D.[-1,3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若复数z满足z(i+1)=$\frac{2}{i-1}$,则复数z的虚部为(  )
A.-1B.0C.iD.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=ax+lnx,其中a∈R.
(Ⅰ)若f(x)在区间[1,2]上为增函数,求a的取值范围;
(Ⅱ)当a=-e时,
(ⅰ)证明:f(x)+2≤0;
(ⅱ)试方程|f(x)|=$\frac{lnx}{x}$+$\frac{3}{2}$是否有实数解,并说明理由.

查看答案和解析>>

同步练习册答案