精英家教网 > 高中数学 > 题目详情
11.若两个正数a,b满足2a+b<4,则$z=\frac{b+2}{2a-2}$的取值范围是(  )
A.{z|-1≤z≤1}B.{z|-1≥z或z≥1}C.{z|-1<z<1}D.{z|-1>z或z>1}

分析 如图所示,画出可行域$z=\frac{b+2}{2a-2}$即为2z=$\frac{b+2}{a-1}$表示可行域内的点P(a,b)与Q(1,-2)所在直线的斜率的2倍.分别求出直线OQ,BQ的斜率即可.

解答 解:由$\left\{\begin{array}{l}{2a+b<4}\\{a>0}\\{b>0}\end{array}\right.$,$z=\frac{b+2}{2a-2}$即为2z=$\frac{b+2}{a-1}$表示可行域内的点P(a,b)与Q(1,-2)所在直线的斜率的2倍,
∵kOQ=-2,kQB=$\frac{0+2}{2-1}$=2,
∴z<-1或z>1,
故选:D.

点评 本题考查了线性规划的可行域、斜率计算公式,考查了推理能力与计算能力,考查了数形结合的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知等差数列{an}的前n项和为Sn,S5=4a3+6,且a2,a3,a9成等比数列.
(1)求数列{an}的通项公式;
(2)如果a1≠a5,求数列{$\frac{1}{{S}_{n}}$}的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
爱好4020
不爱好2030
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与爱好某项运动有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知△ABC的三边长a=3,b=4,c=$\sqrt{37}$,求最大角的度数(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知函数f(x)=$\left\{\begin{array}{l}{x^2}-x,x≥0\\ g(x),x<0\end{array}$是奇函数,则g(f(-2))的值为(  )
A.0B.2C.-2D.-4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知直线$l\left\{\begin{array}{l}x=\frac{{\sqrt{2}}}{2}t-1\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.(t$为参数),以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=2sinθ-2cosθ,若直线l与曲线C相交与A、B两点,求线段AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列各组函数表示同一函数的是(  )
A.$f(x)=\sqrt{x^2}\;\;,\;\;g(x)=x$B.$f(x)=\sqrt{x^2}\;,\;\;g(t)=\left\{\begin{array}{l}t,t≥0\\-t,t<0\end{array}\right.$
C.$f(x)=\root{3}{x^3}\;\;,\;\;g(x)=|x|$D.$f(t)=t\;,\;\;g(x)=\frac{x^2}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin2x的图象向左平移φ(0<φ<π)个单位后,所对应函数在区间$[\frac{π}{3},\frac{5π}{6}]$上单调递减,则实数φ的值是(  )
A.$\frac{11π}{12}$B.$\frac{5π}{6}$C.$\frac{3π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知菱形ABCD的边长为2,∠BAD=120°,$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,$\overrightarrow{DF}=\frac{1}{3}\overrightarrow{DC}$,则$\overrightarrow{AE}•\overrightarrow{AF}$=(  )
A.$\frac{1}{2}$B.2C.1D.$\frac{1}{6}$

查看答案和解析>>

同步练习册答案