精英家教网 > 高中数学 > 题目详情
2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
爱好4020
不爱好2030
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与爱好某项运动有关系?

分析 根据条件中所给的观测值,同题目中节选的观测值表进行检验,得到观测值对应的结果,得到结论在犯错误的概率不超过0.01的前提下认为性别与爱好某项运动有关系.

解答 解:由题意,K2=$\frac{110×(40×30-20×20)^{2}}{60×50×60×50}$=7.822>6.635,
所以在犯错误的概率不超过0.01的前提下,可以认为性别与爱好某项运动有关系.

点评 本题考查独立性检验的应用,考查对于观测值表的认识,这种题目一般运算量比较大,主要要考查运算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}的公比为q(0<q<1),且a2+a5=$\frac{9}{8}$,a3a4=$\frac{1}{8}$.
(I)求数列{an}的通项公式;
(II)若bn=an•(log2an),求bn的前n项和Tn
(III)设该等比数列{an}的前n项和为Sn,正整数m,n满足$\frac{{S}_{n}-m}{{S}_{n+1}-m}$<$\frac{1}{2}$,求出所有符合条件的m,n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.计算
(1)(${\frac{27}{8}}$)${\;}^{-\frac{2}{3}}}$-(${\frac{49}{9}}$)0.5+(0.008)${\;}^{-\frac{2}{3}}}$×$\frac{2}{25}$;
(2)lg25+$\frac{2}{3}$lg8+lg5•lg20+(lg2)2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.(1)计算:$\root{3}{(-4)^{3}}$-($\frac{1}{2}$)0+0.25${\;}^{\frac{1}{2}}$×($\frac{-1}{\sqrt{2}}$)-4
(2)已知x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$=3,求$\frac{{x}^{2}+{x}^{-2}-2}{x+{x}^{-1}-3}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在直三棱柱ABC-A1B1C1中,点M、N分别为线段A1B、AC1的中点.
(1)求证:MN∥平面BB1C1C;
(2)若D在边BC上,AD⊥DC1,求证:MN⊥AD.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.双曲线$\frac{x^2}{9}-\frac{y^2}{3}=1$的渐近线方程为y=±$\frac{\sqrt{3}}{3}$x.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=|2x-1|+|x-a|,a∈R.
(Ⅰ)当a=3时,解不等式f(x)≤4;
(Ⅱ)若f(x)=|x-1+a|,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若两个正数a,b满足2a+b<4,则$z=\frac{b+2}{2a-2}$的取值范围是(  )
A.{z|-1≤z≤1}B.{z|-1≥z或z≥1}C.{z|-1<z<1}D.{z|-1>z或z>1}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设m,n,l为空间不重合的直线,α,β,γ为空间不重合的平面,则下列命题中真命题的序号是(1)(3).
(1)m∥l,n∥l,则m∥n;
(2)m⊥l,n⊥l,则m∥n;
(3)α∥γ,β∥γ,则α∥β;
(4)α⊥γ,β⊥γ,则α∥β.

查看答案和解析>>

同步练习册答案