14£®ÒÑÖªµÈ±ÈÊýÁÐ{an}µÄ¹«±ÈΪq£¨0£¼q£¼1£©£¬ÇÒa2+a5=$\frac{9}{8}$£¬a3a4=$\frac{1}{8}$£®
£¨I£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨II£©Èôbn=an•£¨log2an£©£¬ÇóbnµÄǰnÏîºÍTn£»
£¨III£©Éè¸ÃµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÕýÕûÊým£¬nÂú×ã$\frac{{S}_{n}-m}{{S}_{n+1}-m}$£¼$\frac{1}{2}$£¬Çó³öËùÓзûºÏÌõ¼þµÄm£¬nµÄÖµ£®

·ÖÎö £¨I£©ÓɵȱÈÊýÁеÄÐÔÖÊ¿ÉÖªa3a4=a2•a5=$\frac{1}{8}$£¬a2+a5=$\frac{9}{8}$£¬a2£¬a5ÊÇ·½³Ì£ºx2-$\frac{9}{8}$x+$\frac{1}{8}$=0£¬´úÈë¼´¿ÉÇóµÃa2=1£¬a5=$\frac{1}{8}$£¬¸ù¾ÝµÈ±ÈÊýÁÐÐÔÖÊ£¬ÇóµÃq£¬¸ù¾ÝµÈ±ÈÊýÁÐÐÔÖʼ´¿ÉÇóµÃÊýÁÐ{an}µÄͨÏʽ£»
£¨II£©ÓÉ£¨I£©¿ÉÖª£º${b_n}={a_n}•£¨{{{log}_2}{a_n}}£©=\frac{{£¨{2-n}£©}}{{{2^{n-2}}}}$£¬ÀûÓá°´íλÏà¼õ·¨¡±¼´¿ÉÇóµÃbnµÄǰnÏîºÍTn£»
£¨III£©ÇóµÃµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬´úÈë$\frac{{S}_{n}-m}{{S}_{n+1}-m}$£¼$\frac{1}{2}$£¬ÓÉ2nΪżÊý£¬¿ÉÖª£º2n£¨4-m£©=4£¬¼´¿ÉÇóµÃm£¬nµÄÖµ£®

½â´ð ½â£º£¨I£©ÓɵȱÈÊýÁеÄÐÔÖÊ¿ÉÖª£ºa3a4=a2•a5=$\frac{1}{8}$£¬a2+a5=$\frac{9}{8}$£¬
¡àa2£¬a5ÊÇ·½³Ìx2-$\frac{9}{8}$x+$\frac{1}{8}$=0£¬
ÓÉÌâÒâ¿ÉÖª£ºa2£¾a5£¬
½âµÃ£ºa2=1£¬a5=$\frac{1}{8}$£¬
ÓɵȱÈÊýÁеÄÐÔÖÊ¿ÉÖª£ºa5=a2•q3£¬½âµÃq=$\frac{1}{2}$£¬
an=a2•£¨$\frac{1}{2}$£©n-2=£¨$\frac{1}{2}$£©n-2£»
¡àÊýÁÐ{an}µÄͨÏʽΪ${a_n}={£¨{\frac{1}{2}}£©^{n-2}}$------------------------------------------------------£¨4·Ö£©
£¨II£©ÓÉ£¨I£©¿ÉÖª£º${b_n}={a_n}•£¨{{{log}_2}{a_n}}£©=\frac{{£¨{2-n}£©}}{{{2^{n-2}}}}$£¬
bnµÄǰnÏîºÍTn£¬Tn=b1+b2+b3+¡­+bn£¬
=2+0+£¨-$\frac{1}{2}$£©+£¨-$\frac{2}{{2}^{2}}$£©+£¨-$\frac{3}{{2}^{3}}$£©+¡­+$\frac{n-2}{{2}^{n-2}}$£¬
$\frac{1}{2}$Tn=1+0+£¨-$\frac{1}{{2}^{2}}$£©+£¨-$\frac{2}{{2}^{3}}$£©+£¨-$\frac{3}{{2}^{4}}$£©+¡­+$\frac{n-2}{{2}^{n-1}}$£¬
Á½Ê½Ïà¼õ¿ÉµÃ£º$\frac{1}{2}$Tn=1-£¨$\frac{1}{2}$+$\frac{1}{4}$+$\frac{1}{8}$+¡­+$\frac{1}{{2}^{n-2}}$£©-$\frac{n-2}{{2}^{n-1}}$£¬
=1-$\frac{\frac{1}{2}-\frac{1}{{2}^{n-1}}}{1-\frac{1}{2}}$-$\frac{n-2}{{2}^{n-1}}$£¬
=1-£¨1-$\frac{1}{{2}^{n-2}}$£©-$\frac{n-2}{{2}^{n-1}}$£¬
=$\frac{1}{{2}^{n-2}}$-$\frac{n-2}{{2}^{n-1}}$£¬
=$\frac{n}{{2}^{n-1}}$
¡à${T_n}=\frac{n}{{{2^{n-2}}}}$£»---------------------------£¨9·Ö£©
£¨III£©¡¢${S_n}=4£¨{1-\frac{1}{2^n}}£©$£¬ÓÉ$\frac{{{S_n}-m}}{{{S_{n+1}}-m}}£¼\frac{1}{2}⇒2£¼{2^n}£¨{4-m}£©£¼6$-------------------£¨11·Ö£©
2n£¨4-m£©ÎªÅ¼Êý£¬
Òò´ËÖ»ÄÜÈ¡2n£¨4-m£©=4£¬
¡àÓÐ$\left\{\begin{array}{l}{2^n}=2\\ 4-m=2\end{array}\right.¡Å\left\{\begin{array}{l}{2^n}=4\\ 4-m=1\end{array}\right.⇒\left\{\begin{array}{l}n=1\\ m=2\end{array}\right.¡Å\left\{\begin{array}{l}n=2\\ m=3\end{array}\right.$---------------------------------------£¨15·Ö£©

µãÆÀ ±¾Ì⿼²éµÈ±ÈÊýÁÐÐÔÖÊ£¬Í¨Ïʽ¼°Ç°nÏîºÍ¹«Ê½£¬¿¼²é¡°´íλÏà¼õ·¨¡±ÇóÊýÁеÄǰnÏîºÍ£¬¿¼²éÊýÁÐÓë²»µÈʽµÄ×ۺϣ¬²»µÈʽµÄ½â·¨¼°Ó¦Ó㬿¼²é¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑÖªGµãΪ¡÷ABCµÄÖØÐÄ£¬ÇÒÂú×ãBG¡ÍCG£¬Èô$\frac{1}{tanB}$+$\frac{1}{tanC}$=$\frac{¦Ë}{tanA}$£¬ÔòʵÊý¦Ë=$\frac{1}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªsinx=$\frac{4}{5}$£¬ÇÒxÊǵÚÒ»ÏóÏ޽ǣ¬Ôòcosx=$\frac{3}{5}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èôtan¦Á=$\frac{3}{4}$£¬Ôòcos2¦Á+2sin2¦Á=$\frac{64}{25}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÈôÖ±Ïßx-y=0ÓëÖ±Ïß2x+ay-1=0ƽÐУ¬ÔòʵÊýaµÄֵΪ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÈôÍÖÔ²C1£º$\frac{x^2}{4}$+$\frac{y^2}{b^2}$=1£¨0£¼b£¼2£©µÄÀëÐÄÂʵÈÓÚ$\frac{{\sqrt{3}}}{2}$£¬Å×ÎïÏßC2£ºx2=2py£¨p£¾0£©µÄ½¹µãÔÚÍÖÔ²C1µÄ¶¥µãÉÏ£®
£¨1£©ÇóÅ×ÎïÏßC2µÄ·½³Ì£»
£¨2£©ÉèM£¨x1£¬y1£©ºÍN£¨x2£¬y2£©ÎªÅ×ÎïÏßC2ÉϵÄÁ½¸ö¶¯µã£¬ÆäÖÐy1¡Ùy2ÇÒy1+y2=4£¬Ïß¶ÎMNµÄ´¹Ö±Æ½·ÖÏßlÓëyÖá½»ÓÚµãP£¬Çó¡÷MNPÃæ»ýµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

6£®ÈçͼÈý½ÇÐΣ¬AB=1£¬AC=$\sqrt{7}$£¬cosA=$\frac{{2\sqrt{7}}}{7}$£¬ÔòÈý½ÇÐÎÈÆ×ÅABÐýתһÖܵõ½µÄ¼¸ºÎÌåµÄÌå»ýΪ¦Ð£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªµÈ²îÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬S5=4a3+6£¬ÇÒa2£¬a3£¬a9³ÉµÈ±ÈÊýÁУ®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©Èç¹ûa1¡Ùa5£¬ÇóÊýÁÐ{$\frac{1}{{S}_{n}}$}µÄǰnÏîºÍ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Í¨¹ýËæ»úѯÎÊ110ÃûÐÔ±ð²»Í¬µÄ´óѧÉúÊÇ·ñ°®ºÃijÏîÔ˶¯£¬µÃµ½ÈçϵÄÁÐÁª±í£º
ÄÐÅ®
°®ºÃ4020
²»°®ºÃ2030
P£¨K2¡Ýk£©0.0500.0100.001
k3.8416.63510.828
¸ù¾ÝÁÐÁª±íµÄ¶ÀÁ¢ÐÔ¼ìÑ飬ÄÜ·ñÔÚ·¸´íÎóµÄ¸ÅÂʲ»³¬¹ý0.01µÄǰÌáÏÂÈÏΪÐÔ±ðÓë°®ºÃijÏîÔ˶¯ÓйØÏµ£¿

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸