精英家教网 > 高中数学 > 题目详情
12.设m,n,l为空间不重合的直线,α,β,γ为空间不重合的平面,则下列命题中真命题的序号是(1)(3).
(1)m∥l,n∥l,则m∥n;
(2)m⊥l,n⊥l,则m∥n;
(3)α∥γ,β∥γ,则α∥β;
(4)α⊥γ,β⊥γ,则α∥β.

分析 根据平面与平面平行、垂直的性质、判定,即可得出结论.

解答 解:对(1)由平行公理可得平行的传递性,为正确命题;
对(2)m⊥l,n⊥l,则m与n的关系有m∥n或m⊥n或m与n异面,所以为错误命题;
对(3)由平行的传递性可得为正确命题;
对(4)α⊥γ,β⊥γ,则α与β的关系为α∥β或α⊥β或α与β相交,所以为假命题.
综上真命题为(1)(3).
故答案为:(1)(3).

点评 本题主要考查空间直线和平面的位置关系的判断,要求熟练掌握相应的判定定理和性质定理.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:
爱好4020
不爱好2030
P(K2≥k)0.0500.0100.001
k3.8416.63510.828
根据列联表的独立性检验,能否在犯错误的概率不超过0.01的前提下认为性别与爱好某项运动有关系?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列各组函数表示同一函数的是(  )
A.$f(x)=\sqrt{x^2}\;\;,\;\;g(x)=x$B.$f(x)=\sqrt{x^2}\;,\;\;g(t)=\left\{\begin{array}{l}t,t≥0\\-t,t<0\end{array}\right.$
C.$f(x)=\root{3}{x^3}\;\;,\;\;g(x)=|x|$D.$f(t)=t\;,\;\;g(x)=\frac{x^2}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知函数f(x)=sin2x的图象向左平移φ(0<φ<π)个单位后,所对应函数在区间$[\frac{π}{3},\frac{5π}{6}]$上单调递减,则实数φ的值是(  )
A.$\frac{11π}{12}$B.$\frac{5π}{6}$C.$\frac{3π}{4}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图,给出了计算$1+\frac{1}{2}+\frac{1}{3}+$…$\frac{1}{12}$的一个流程图,其中判断框内应填入的条件是(  )
A.n>12B.n<12C.n<13D.n>13

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.过抛物线y2=4x焦点的弦的中点的横坐标为4,则该弦长为18.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$f(\sqrt{x}+4)=x+8\sqrt{x}$,则f(x)=x2-16(x≥4).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知菱形ABCD的边长为2,∠BAD=120°,$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,$\overrightarrow{DF}=\frac{1}{3}\overrightarrow{DC}$,则$\overrightarrow{AE}•\overrightarrow{AF}$=(  )
A.$\frac{1}{2}$B.2C.1D.$\frac{1}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,a,b,c分别是A,B,C的对边,且满足(2a-c)cosB=bcosC,角B的大小为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

同步练习册答案