精英家教网 > 高中数学 > 题目详情
13.已知f(x)=|x-a|+|x-1|
(Ⅰ)当a=2,求不等式f(x)<4的解集;
(Ⅱ)若对任意的x,f(x)≥2恒成立,求a的取值范围.

分析 (Ⅰ)将a的值带入,通过讨论x的范围,求出不等式的解集即可;
(Ⅱ)根据绝对值的性质得到关于a的不等式,解出即可.

解答 解:(Ⅰ)当a=2时,不等式f(x)<4,即|x-2|+|x-1|<4,
可得$\left\{\begin{array}{l}{x≥2}\\{x-2+x-1<4}\end{array}\right.$,或$\left\{\begin{array}{l}{1<x<2}\\{2-x+x-1<4}\end{array}\right.$或$\left\{\begin{array}{l}{x≤1}\\{2-x+1-x<4}\end{array}\right.$,
解得:-$\frac{1}{2}$<x<$\frac{7}{2}$,所以不等式的解集为{x|-$\frac{1}{2}$<x<$\frac{7}{2}$}.
(Ⅱ)∵|x-a|+|x-1|≥|a-1|,当且仅当(x-a)(x-1)≤0时等号成立,
由|a-1|≥2,得a≤-1或a≥3,
即a的取值范围为(-∞,-1]∪[3,+∞).

点评 本题考查了解绝对值不等式问题,考查绝对值的性质,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

3.已知$f(x)=\frac{lnx}{x}$,则(  )
A.f(2)>f(e)>f(3)B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e)D.f(e)>f(3)>f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∠ABC=60°,E是BC中点,M是PD上的中点,F是PC上的动点.
(Ⅰ)求证:平面AEF⊥平面PAD
(Ⅱ)直线EM与平面PAD所成角的正切值为$\frac{\sqrt{6}}{2}$,当F是PC中点时,求二面角C-AF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若定义在R上的函数f(x)满足f(x)+f'(x)<1且f(0)=3,则不等式$f(x)>\frac{2}{e^x}+1$(其中e为自然对数的底数)的解集为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC的内角A,B,C的对边分别为a,b,c,已知a(sinA-sinB)=(c-b)(sinC+sinB)
(Ⅰ)求角C;
(Ⅱ)若c=$\sqrt{7}$,△ABC的面积为$\frac{3\sqrt{3}}{2}$,求△ABC的周长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知全集U={1,2,3,4,5,6,7},集合A={1,3,7},B={x|x=log2(a+1),a∈A},则(∁UA)∩(
(∁UB)=(  )
A.{1,3}B.{5,6}C.{4,5,6}D.{4,5,6,7}

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,将直线y=x与直线x=1及x轴所围成的图形绕x轴旋转一周得到一个圆锥,圆锥的体积V圆锥=${∫}_{0}^{1}$πx2dx=$\frac{π}{3}$x3|${\;}_{0}^{1}$=$\frac{π}{3}$.据此类比:将曲线y=2lnx与直线y=1及x轴、y轴所围成的图形绕y轴旋转一周得到一个旋转体,该旋转体的体积V=π(e-1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在平面直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}x=\sqrt{2}•tsin\frac{π}{6}\\ y=tcos\frac{7π}{4}-6\sqrt{2}\end{array}\right.$(t是参数)
以原点O为极点,Ox为极轴建立极坐标系,圆C的极坐标方程为$ρ=4cos({θ+\frac{π}{4}})$.
(1)求直线l的普通方程和圆心C的直角坐标;
(2)求圆C上的点到直线l距离的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在三棱柱ABCA1B1C1中,侧面ABB1A1为矩形,AB=3,AA1=3$\sqrt{2}$,D为AA1的中点,BD与AB1交于点O,CO⊥侧面ABB1A1
(Ⅰ)证明:BC⊥AB1
(Ⅱ)若OC=OA,求二面角A1-AC-B的余弦值.

查看答案和解析>>

同步练习册答案