精英家教网 > 高中数学 > 题目详情
1.若定义在R上的函数f(x)满足f(x)+f'(x)<1且f(0)=3,则不等式$f(x)>\frac{2}{e^x}+1$(其中e为自然对数的底数)的解集为(-∞,0).

分析 构造函数g(x)=exf(x)-ex,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.

解答 解:设g(x)=exf(x)-ex,(x∈R),
则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f(x)+f′(x)<1,
∴f(x)+f′(x)-1<0,
∴g′(x)<0,
∴y=g(x)在定义域上单调递减,
∵exf(x)>ex+2,
∴g(x)>2,
又∵g(0)═e0f(0)-e0=3-1=2,
∴g(x)>g(0),
∴x<0
故答案为:(-∞,0).

点评 本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

11.曲线$y=\frac{{{x^2}+4}}{x}$的一条切线l与y=x,y轴三条直线围成三角形记为△OAB,则△OAB外接圆面积的最小值为(  )
A.$8\sqrt{2}π$B.$8(3-\sqrt{2})π$C.$16(\sqrt{2}-1)π$D.$16(2-\sqrt{2})π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$f(x)=\left\{\begin{array}{l}f(x+1),(x<1)\\{3^x}\;,\;\;(x≥1)\end{array}\right.$,则f(-1+log35)=(  )
A.15B.$\frac{5}{3}$C.5D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第三天走了(  )
A.60里B.48里C.36里D.24里

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,空间几何体ADE-BCF中,四边形ABCD是梯形,四边形CDEF
是矩形,且平面ABCD⊥平面CDEF,AD⊥DC,AB=AD=DE=2,EF=4,M是线段AE上的动点.
(1)求证:AE⊥CD;
(2)试确定点M的位置,使AC∥平面MDF,并说明理由;
(3)在(2)的条件下,求空间几何体ADM-BCF的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图是某几何体的三视图,则该几何体的体积为(  )
A.$\frac{8}{3}$B.$\frac{4}{3}$C.$\frac{8\sqrt{2}}{3}$D.$\frac{4\sqrt{2}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=|x-a|+|x-1|
(Ⅰ)当a=2,求不等式f(x)<4的解集;
(Ⅱ)若对任意的x,f(x)≥2恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.在△ABC中,角C=60°,tan$\frac{A}{2}$+tan$\frac{B}{2}$=1,则tan$\frac{A}{2}$•tan$\frac{B}{2}$=1-$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.函数y=sin(3x+$\frac{π}{4}$)的图象适当变换就可以得到y=cos3x的图象,这种变换可以是(  )
A.向右平移$\frac{π}{4}$个单位长度B.向右平移$\frac{π}{12}$个单位长度
C.向左平移$\frac{π}{4}$个单位长度D.向左平移$\frac{π}{12}$个单位长度

查看答案和解析>>

同步练习册答案