分析 构造函数g(x)=exf(x)-ex,(x∈R),研究g(x)的单调性,结合原函数的性质和函数值,即可求解.
解答 解:设g(x)=exf(x)-ex,(x∈R),
则g′(x)=exf(x)+exf′(x)-ex=ex[f(x)+f′(x)-1],
∵f(x)+f′(x)<1,
∴f(x)+f′(x)-1<0,
∴g′(x)<0,
∴y=g(x)在定义域上单调递减,
∵exf(x)>ex+2,
∴g(x)>2,
又∵g(0)═e0f(0)-e0=3-1=2,
∴g(x)>g(0),
∴x<0
故答案为:(-∞,0).
点评 本题考查函数单调性与奇偶性的结合,结合已知条件构造函数,然后用导数判断函数的单调性是解题的关键.
科目:高中数学 来源: 题型:选择题
| A. | $8\sqrt{2}π$ | B. | $8(3-\sqrt{2})π$ | C. | $16(\sqrt{2}-1)π$ | D. | $16(2-\sqrt{2})π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15 | B. | $\frac{5}{3}$ | C. | 5 | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 60里 | B. | 48里 | C. | 36里 | D. | 24里 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{8}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{8\sqrt{2}}{3}$ | D. | $\frac{4\sqrt{2}}{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 向右平移$\frac{π}{4}$个单位长度 | B. | 向右平移$\frac{π}{12}$个单位长度 | ||
| C. | 向左平移$\frac{π}{4}$个单位长度 | D. | 向左平移$\frac{π}{12}$个单位长度 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com