精英家教网 > 高中数学 > 题目详情
12.已知$f(x)=\left\{\begin{array}{l}f(x+1),(x<1)\\{3^x}\;,\;\;(x≥1)\end{array}\right.$,则f(-1+log35)=(  )
A.15B.$\frac{5}{3}$C.5D.$\frac{1}{5}$

分析 判断-1+log35的范围,利用分段函数化简求解即可.

解答 解:-1+log35∈(0,1),
f(-1+log35)=f(-1+log35+1)=f(log35)=${3}^{lo{g}_{3}5}$=5,
故选:C.

点评 本题考查分段函数的应用,函数值的求法,注意对数式的范围,是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.函数f(x)=(3-x2)•ln|x|的大致图象为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$f(x)=\frac{lnx}{x}$,则(  )
A.f(2)>f(e)>f(3)B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e)D.f(e)>f(3)>f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.要测量电视塔AB的高度,在C点测得塔顶的仰角是45°,在D点测得塔顶的仰角是30°,并测得水平面上的∠BCD=120°,CD=40m,则电视塔的高度是(  )
A.30mB.40mC.$40\sqrt{3}$mD.$40\sqrt{2}$m

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若圆${C_1}:{x^2}+{y^2}+ax=0$与圆${C_2}:{x^2}+{y^2}+2ax+ytanθ=0$都关于直线2x-y-1=0对称,则sinθcosθ=-$\frac{2}{5}$,.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.四棱锥P-ABCD的三视图如图所示,其五个顶点都在同一球面上,若四棱锥P-ABCD的侧面积等于4(1+$\sqrt{2}$),则该外接球的表面积是(  )
A.B.12πC.24πD.36π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知四棱锥P-ABCD中,PA⊥平面ABCD,底面ABCD为菱形,∠ABC=60°,E是BC中点,M是PD上的中点,F是PC上的动点.
(Ⅰ)求证:平面AEF⊥平面PAD
(Ⅱ)直线EM与平面PAD所成角的正切值为$\frac{\sqrt{6}}{2}$,当F是PC中点时,求二面角C-AF-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.若定义在R上的函数f(x)满足f(x)+f'(x)<1且f(0)=3,则不等式$f(x)>\frac{2}{e^x}+1$(其中e为自然对数的底数)的解集为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知在平面直角坐标系xOy中,直线l的参数方程是$\left\{\begin{array}{l}x=\sqrt{2}•tsin\frac{π}{6}\\ y=tcos\frac{7π}{4}-6\sqrt{2}\end{array}\right.$(t是参数)
以原点O为极点,Ox为极轴建立极坐标系,圆C的极坐标方程为$ρ=4cos({θ+\frac{π}{4}})$.
(1)求直线l的普通方程和圆心C的直角坐标;
(2)求圆C上的点到直线l距离的最小值.

查看答案和解析>>

同步练习册答案