精英家教网 > 高中数学 > 题目详情
3.已知$f(x)=\frac{lnx}{x}$,则(  )
A.f(2)>f(e)>f(3)B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e)D.f(e)>f(3)>f(2)

分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值,计算f(e),f(3),f(2)的值,比较即可.

解答 解:f(x)的定义域是(0,+∞),
∵$f'(x)=\frac{1-lnx}{x^2}$,
∴x∈(0,e),f'(x)>0;
x∈(e,+∞),f'(x)<0,
故x=e时,f(x)max=f(e),
而$f(2)=\frac{ln2}{2}=\frac{ln8}{6},f(3)=\frac{ln3}{3}=\frac{ln9}{6}$,
f(e)>f(3)>f(2),
故选:D.

点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

13.已知向量$[\begin{array}{l}\;1\\-1\end{array}]$是矩阵A的属于特征值-1的一个特征向量.在平面直角坐标系xOy中,点P(1,1)在矩阵A对应的变换作用下变为P'(3,3),求矩阵A.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知圆C:x2+y2=4,点P为直线x+2y-9=0上一动点,过点P向圆C引两条切线PA、PB,A、B为切点,则直线AB经过定点(  )
A.$(\frac{4}{9},\frac{8}{9})$B.$(\frac{2}{9},\frac{4}{9})$C.(2,0)D.(9,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.曲线$y=\frac{{{x^2}+4}}{x}$的一条切线l与y=x,y轴三条直线围成三角形记为△OAB,则△OAB外接圆面积的最小值为(  )
A.$8\sqrt{2}π$B.$8(3-\sqrt{2})π$C.$16(\sqrt{2}-1)π$D.$16(2-\sqrt{2})π$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.命题“?x0∈(1,+∞),x02+2x0+2≤0”的否定形式是(  )
A.$?x∈(1,+∞),x_0^2+2{x_0}+2>0$B.$?x∈({-∞,1}],x_0^2+2{x_0}+2>0$
C.$?{x_0}∈(1,+∞),x_0^2+2{x_0}+2>0$D.$?{x_0}∈({-∞,1}],x_0^2+2{x_0}+2>0$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=e-x-|lnx|的两个零点分别为x1,x2,则(  )
A.0<x1x2<1B.x1x2=1C.1<x1x2<eD.x1x2>e

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数$f(x)=2ln(x+1)+\frac{1}{2}m{x^2}-(2m+1)x$
(Ⅰ)若x=1是f(x)的极值点,求f(x)的极值;
(Ⅱ)若f(x)有两个极值点,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知$f(x)=\left\{\begin{array}{l}f(x+1),(x<1)\\{3^x}\;,\;\;(x≥1)\end{array}\right.$,则f(-1+log35)=(  )
A.15B.$\frac{5}{3}$C.5D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知f(x)=|x-a|+|x-1|
(Ⅰ)当a=2,求不等式f(x)<4的解集;
(Ⅱ)若对任意的x,f(x)≥2恒成立,求a的取值范围.

查看答案和解析>>

同步练习册答案