| A. | f(2)>f(e)>f(3) | B. | f(3)>f(e)>f(2) | C. | f(3)>f(2)>f(e) | D. | f(e)>f(3)>f(2) |
分析 求出函数的导数,解关于导函数的不等式,求出函数的单调区间,从而求出函数的最大值,计算f(e),f(3),f(2)的值,比较即可.
解答 解:f(x)的定义域是(0,+∞),
∵$f'(x)=\frac{1-lnx}{x^2}$,
∴x∈(0,e),f'(x)>0;
x∈(e,+∞),f'(x)<0,
故x=e时,f(x)max=f(e),
而$f(2)=\frac{ln2}{2}=\frac{ln8}{6},f(3)=\frac{ln3}{3}=\frac{ln9}{6}$,
f(e)>f(3)>f(2),
故选:D.
点评 本题考查了函数的单调性、最值问题,考查导数的应用,是一道基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{4}{9},\frac{8}{9})$ | B. | $(\frac{2}{9},\frac{4}{9})$ | C. | (2,0) | D. | (9,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $8\sqrt{2}π$ | B. | $8(3-\sqrt{2})π$ | C. | $16(\sqrt{2}-1)π$ | D. | $16(2-\sqrt{2})π$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $?x∈(1,+∞),x_0^2+2{x_0}+2>0$ | B. | $?x∈({-∞,1}],x_0^2+2{x_0}+2>0$ | ||
| C. | $?{x_0}∈(1,+∞),x_0^2+2{x_0}+2>0$ | D. | $?{x_0}∈({-∞,1}],x_0^2+2{x_0}+2>0$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0<x1x2<1 | B. | x1x2=1 | C. | 1<x1x2<e | D. | x1x2>e |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 15 | B. | $\frac{5}{3}$ | C. | 5 | D. | $\frac{1}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com