精英家教网 > 高中数学 > 题目详情
18.命题“?x0∈(1,+∞),x02+2x0+2≤0”的否定形式是(  )
A.$?x∈(1,+∞),x_0^2+2{x_0}+2>0$B.$?x∈({-∞,1}],x_0^2+2{x_0}+2>0$
C.$?{x_0}∈(1,+∞),x_0^2+2{x_0}+2>0$D.$?{x_0}∈({-∞,1}],x_0^2+2{x_0}+2>0$

分析 根据特称命题的否定是全称命题,写出它的否定命题即可.

解答 解:命题“?x0∈(1,+∞),x02+2x0+2≤0”的否定形式是:
“?x∈(1,+∞),x2+2x+2>0”.
故选:A.

点评 本题考查了特称命题的否定是全称命题的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.如图,在四棱锥P-ABCD中,四边形ABCD为平行四边形,AC,BD相交于点O,点E为PC的中点,OP=OC,PA⊥PD.求证:
(1)直线PA∥平面BDE;
(2)平面BDE⊥平面PCD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在平面四边形ABCD中,AB⊥AD,AB=1,AC=$\sqrt{7}$,△ABC的面积S△ABC=$\frac{{\sqrt{3}}}{2}$,DC=$\frac{{4\sqrt{7}}}{5}$
(Ⅰ)求BC的长;
(Ⅱ)求∠ACD的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如果定义在R上的函数f(x)满足:对于任意x1≠x2,都有x1f(x1)+x2f(x2)≥x1f(x2)+x2f(x1),则称f(x)为“H函数”.给出下列函数:
①y=-x3+x+l;
②y=3x-2(sinx-cosx);
③y=l-ex;
④f(x)=$\left\{\begin{array}{l}{lnx(x≥1)}\\{0(x<1)}\end{array}\right.$,
其中“H函数”的个数有(  )
A.3个B.2个C.1个D.0个

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.在△ABC中,角A,B,C的对边长是a,b,c公差为1的等差数列,且a+b=2ccosA.
(Ⅰ)求证:C=2A;
(Ⅱ)求a,b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知$f(x)=\frac{lnx}{x}$,则(  )
A.f(2)>f(e)>f(3)B.f(3)>f(e)>f(2)C.f(3)>f(2)>f(e)D.f(e)>f(3)>f(2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知y=f(x+1)+2是定义域为R的奇函数,则f(0)+f(2)=-4.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若圆${C_1}:{x^2}+{y^2}+ax=0$与圆${C_2}:{x^2}+{y^2}+2ax+ytanθ=0$都关于直线2x-y-1=0对称,则sinθcosθ=-$\frac{2}{5}$,.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.△ABC的内角A,B,C的对边分别为a,b,c,已知a(sinA-sinB)=(c-b)(sinC+sinB)
(Ⅰ)求角C;
(Ⅱ)若c=$\sqrt{7}$,△ABC的面积为$\frac{3\sqrt{3}}{2}$,求△ABC的周长.

查看答案和解析>>

同步练习册答案