精英家教网 > 高中数学 > 题目详情
14.在直角坐标系xoy中,曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$(θ为参数),以坐标原点为极点,以x轴的正半轴为极轴,建立极坐标系.
(Ⅰ)写出曲线C的极坐标方程;
(Ⅱ)设点M的极坐标为($\sqrt{2}$,$\frac{π}{4}$),过点M的直线l与曲线C相交于A,B两点,求|MA|•|MB|

分析 (Ⅰ)由曲线C的参数方程先求出曲线C的直角坐标方程,由此能求出曲线C的极坐标方程.
(Ⅱ)先求出直线l的参数方程,与曲线C的直角坐标方程联立,得t2+2(cosθ-sinθ)t-2=0,利用参数的几何意义能求出|MA|•|MB|.

解答 解:(Ⅰ)曲线C的参数方程为$\left\{\begin{array}{l}{x=2cosθ}\\{y=2+2sinθ}\end{array}\right.$(θ为参数),
∴曲线C的直角坐标方程为x2+y2-4y=0,
∴曲线C的极坐标方程为ρ2-4ρsinθ=0,
即曲线C的极坐标方程为ρ=4sinθ.…5分
(Ⅱ)设直线l的参数方程是$\left\{\begin{array}{l}{x=1+tcosα}\\{y=1+tsinα}\end{array}\right.$(α为参数)①
曲线C的直角坐标方程是x2+y2-4y=0,②
①②联立,得t2+2(cosθ-sinθ)t-2=0,
∴t1t2=-2,
∴|MA|•|MB|=2…10分

点评 本题考查曲线的极坐标方程的求法,考查参数方程的运用,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知角θ的终边过点(2sin2$\frac{π}{8}$-1,a),若sinθ=2$\sqrt{3}$sin$\frac{13π}{12}$cos$\frac{π}{12}$,则实数a等于(  )
A.-$\sqrt{6}$B.-$\frac{\sqrt{6}}{2}$C.±$\sqrt{6}$D.±$\frac{\sqrt{6}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设函数f(x)=8lnx+15x-x2,数列{an}满足an=f(n),n∈N+,数列{an}的前n项和Sn最大时,n=(  )
A.15B.16C.17D.18

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知x,y满足$\left\{\begin{array}{l}{y≥x}&{\;}\\{x+y≤2}&{\;}\\{x≥a}&{\;}\end{array}\right.$,且z=2x-y的最大值是最小值的-2倍,则a=(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设数列{an}是各项为正数的等比数列,Sn为其前n项和,已知a2a4=16,$\frac{{a}_{4}+{a}_{5}+{a}_{8}}{{a}_{1}+{a}_{2}+{a}_{5}}$=8,则S5=(  )
A.40B.20C.31D.43

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.甲乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为$\frac{2}{3}$,且各局比赛结果相互独立,则在甲获得冠军的情况下,比赛进行了三局的概率为(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{2}{3}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某几何体的三视图如图所示,则该几何体的体积为$\frac{16}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知直线l的参数方程为$\left\{\begin{array}{l}{x=2+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),以原点为极点,x轴正半轴为极轴的极坐标系中(单位长度相同),曲线C的极坐标方程为ρsin2θ=8cosθ.
(1)求曲线C的直角坐标方程;
(2)设直线l与曲线C交于A、B两点,求弦长|AB|.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知{an}是公差不为0 的等差数列,Sn是其前n项和,若a2a3=a4a5,S9=1,则a1的值是$-\frac{5}{27}$.

查看答案和解析>>

同步练习册答案