【题目】已知函数f(x)=,若关于x的方程f(x)=kx-恰有4个不相等的实数根,则实数k的取值范围是( )
A. B.
C. D.
【答案】D
【解析】
由已知可将问题转化为:y=f(x)的图象和直线y=kx-有4个交点,作出图象,由图可得:点(1,0)必须在直线y=kx-的下方,即可求得:k>;再求得直线y=kx-和y=ln x相切时,k=;结合图象即可得解.
若关于x的方程f(x)=kx-恰有4个不相等的实数根,
则y=f(x)的图象和直线y=kx-有4个交点.作出函数y=f(x)的图象,如图,
故点(1,0)在直线y=kx-的下方.
∴k×1->0,解得k>.
当直线y=kx-和y=ln x相切时,设切点横坐标为m,
则k==,∴m=.
此时,k==,f(x)的图象和直线y=kx-有3个交点,不满足条件,
故所求k的取值范围是,
故选D..
科目:高中数学 来源: 题型:
【题目】如图,在斜三棱柱ABC﹣A1B1C1中,点O、E分别是A1C1、A1B1的中点,A1C与AC1交于点F,AO⊥平面A1B1C1.已知∠BCA=90°,AA1=AC=BC=2.
(1)求证:EF∥平面BB1C1C;
(2)求A1C1与平面AA1B1所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为(为参数).在以坐标原点为极点,轴的正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求曲线的普通方程及直线的直角坐标方程;
(2)求曲线上的点到直线的距离的最大值与最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2019年11月15日,我市召开全市创建全国文明城市动员大会,会议向全市人民发出动员令,吹响了集结号.为了了解哪些人更关注此活动,某机构随机抽取了年龄在15~75岁之间的100人进行调查,并按年龄绘制的频率分布直方图如图所示,其分组区间为:,,,,,.把年龄落在和内的人分别称为“青少年人”和“中老年人”,经统计“青少年人”与“中老年人”的人数之比为.
(1)求图中的值,若以每个小区间的中点值代替该区间的平均值,估计这100人年龄的平均值;
(2)若“青少年人”中有15人关注此活动,根据已知条件完成题中的列联表,根据此统计结果,问能否有的把握认为“中老年人”比“青少年人”更加关注此活动?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某企业有甲、乙两套设备生产同一种产品,为了检测两套设备的生产质量情况,随机从两套设备生产的大量产品中各抽取了50件产品作为样本,检测一项质量指标值,若该项质量指标值落在内,则为合格品,否则为不合格品. 表1是甲套设备的样本的频数分布表,图1是乙套设备的样本的频率分布直方图.
表1:甲套设备的样本的频数分布表
质量指标值 | [95,100) | [100,105) | [105,110) | [110,115) | [115,120) | [120,125] |
频数 | 1 | 4 | 19 | 20 | 5 | 1 |
图1:乙套设备的样本的频率分布直方图
(1)填写下面列联表,并根据列联表判断是否有90%的把握认为该企业生产的这种产品的质量指标值与甲、乙两套设备的选择有关;
甲套设备 | 乙套设备 | 合计 | |||||||||||||
合格品 | |||||||||||||||
不合格品 | |||||||||||||||
合计 | ,求的期望. |
P(K2≥k0) | 0.15 | 0.10 | 0.050 | 0.025 | 0.010 |
k0 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】我国是世界上严重缺水的国家之一,城市缺水问题较为突出.某市为了节约生活用水,计划在本市试行居民生活用水定额管理(即确定一个居民月均用水量标准:用水量不超过a的部分按照平价收费,超过a的部分按照议价收费).为了较为合理地确定出这个标准,通过抽样获得了40位居民某年的月均用水量(单位:吨),按照分组制作了频率分布直方图,
(Ⅰ)用该样本估计总体:
(1)估计该市居民月均用水量的平均数;
(2)如果希望86%的居民每月的用水量不超出标准,则月均用水量a的最低标准定为多少吨?
(Ⅱ)在该样本中月均用水量少于1吨的居民中随机抽取两人,其中两人月均用水量都不低于0.5吨的概率是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆C:()的左顶点为A,离心率为,点在椭圆C上.
(1)求椭圆C的方程;
(2)若直线()与椭圆C交于E,F两点,直线,分别与y轴交于点M,N,求证:在x轴上存在点P,使得无论非零实数k怎样变化,以为直径的圆都必过点P,并求出点P的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】根据气象部门预报,在距离某个码头A南偏东45°方向的600km处的热带风暴中心B正以30km/h的速度向正北方向移动,距离风暴中心450km以内的地区都将受到影响,从现在起经过___小时后该码头A将受到热带风暴的影响(精确到0.01).
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆经过两点,为坐标原点.
(1)求椭圆的标准方程;
(2)设动直线与椭圆有且仅有一个公共点,且与圆相交于两点,试问直线与的斜率之积是否为定值?若是,求出该定值;若不是,说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com