精英家教网 > 高中数学 > 题目详情
16.已知幂函数y=f(x),f′(x)为f(x)的导函数,f(x)在区间[0,1]上图象如图所示.对满足:0<x1<x2<1的任意x1、x2,给出下列结论:
①f(x1)-f(x2)>x1-x2
②x2f(x1)>x1f(x2
③$\frac{f({x}_{1})+f({x}_{2})}{2}$<f($\frac{{x}_{1}+{x}_{2}}{2}$)
④[f′(x1)-f′(x2)](x1-x2)>0
其中一定正确结论的序号是(  )
A.①②③B.①③C.③④D.②③

分析 由函数的图象,我们可根据$\frac{f{(x}_{2})-f{(x}_{1})}{{x}_{2}{-x}_{1}}$(图象上任意两点之间的斜率)与1的大小判断①的对错;根据得$\frac{f{(x}_{1})}{{x}_{1}}$与$\frac{f{(x}_{2})}{{x}_{2}}$(图象上任意两点与原点连线的斜率)的大小判断②的正误;再根据函数图象是凸增的,我们可判断③的真假;得到f′(x)在(0,1)递减,由x1<x2得:f′(x1)>f′(x2),(x1-x2)<0,从而判断正误.

解答 解:由f(x2)-f(x1)>x2-x1,可得 $\frac{f{(x}_{2})-f{(x}_{1})}{{x}_{2}{-x}_{1}}$>1,
即两点(x1,f(x1))与(x2,f(x2))连线的斜率大于1,
显然①不正确;
由x2f(x1)>x1f(x2),得 $\frac{f{(x}_{1})}{{x}_{1}}$>$\frac{f{(x}_{2})}{{x}_{2}}$,
即表示两点(x1,f(x1))、(x2,f(x2))与原点连线的斜率的大小,
可以看出结论②正确;
结合函数图象,容易判断③的结论是正确的,
结合图象函数递增的速度减小,故f′(x)在(0,1)递减,
由x1<x2得:f′(x1)>f′(x2),即f′(x1)-f′(x2)>0,(x1-x2)<0,
故④[f′(x1)-f′(x2)](x1-x2)<0,④错误;
故选:D.

点评 本题考查的知识点是函数的图象和直线的斜率,解答的关键是结合函数图象分析结论中式子的几何意义,然后进行判断.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.定义一种运算:$|\left.\begin{array}{l}{{a}_{1}}&{{a}_{2}}\\{{a}_{3}}&{{a}_{4}}\end{array}\right.|$=a1•a4-a2•a3,那么函数f(x)=$|\left.\begin{array}{l}{\sqrt{3}}&{cosx}\\{1}&{sinx}\end{array}\right.|$的图象向左平移k(k>0)个单位后,所得图象关于y轴对称,则k的最小值应为(  )
A.$\frac{2π}{3}$B.$\frac{5π}{6}$C.$\frac{π}{3}$D.$\frac{π}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.(x-2y)3(x+y)4的展开式中x3y4项的系数是(  )
A.3B.12C.17D.35

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一个空间几何体的三视图如图所示,那么这个空间几何体是(  )
A.B.圆锥C.正方体D.圆柱

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.将边长为2的正方形ABCD沿对角线AC折起,使BD=2,则三棱锥D-ABC的体积为$\frac{2\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.如图所示,正方体ABCD-A1B1C1D1的棱长为4,P为BC的中点,Q为线段CC1上的动点,过点A、P、Q的平面截正方体所得的截面即为S.
①当CQ=2时,被S截得的较小几何体为棱台;
②当3<CQ<4时,S为五边形;
③当CQ=3时,S与C1D1的交点R满足D1R=1;
④当CQ=4时,S截正方体两部分的体积之比为1:1.
则以上命题正确的是①②④  (写出所有正确命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.某几何体的三视图如图所示,记A为此几何体所有棱的长度的集合,则(  )
A.$\sqrt{5}∈A$B.$\sqrt{11}∈A$C.$\sqrt{7}∈A$D.4∈A

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左、右焦点分别为F1、F2,且A(a,0)、B(0,b)满足条件|AB|=$\frac{{\sqrt{2}}}{2}$|F1F2|.
(Ⅰ)求椭圆C的离心率;
(Ⅱ)若坐标原点O到直线AB的距离为$\frac{{3\sqrt{3}}}{2}$,求椭圆C的方程;
(Ⅲ)在(Ⅱ)的条件下,过点P(-2,1)的直线l与椭圆C交于M、N两点,且点P恰为线段MN的中点,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.某程序框图如图所示,其中t∈Z,该程序运行后输出的k=4,则t的最大值为(  )
A.10B.11C.12D.13

查看答案和解析>>

同步练习册答案