分析 取AC的中点,连结OB,OD,求出OB,OD,利用勾股定理的逆定理得出OB⊥OD,结合OD⊥AC得出OD⊥平面ABC,代入棱锥的体积公式计算即可.
解答
解:取AC的中点O,连结OB,OD,
∵AD=CD=2,∠ADC=90°,
∴AC=2$\sqrt{2}$,OD=$\frac{1}{2}$AC=$\sqrt{2}$,OD⊥AC.
同理OB=$\sqrt{2}$,
∵BD=2,
∴OD2+OB2=BD2,∴OB⊥OD,
又AC?平面ABC,OB?平面ABC,AC∩OB=O,
∴OD⊥平面ABC,
∴VD-ABC=$\frac{1}{3}{S}_{△ABC}•OD$=$\frac{1}{3}×\frac{1}{2}×2×2×\sqrt{2}=\frac{2\sqrt{2}}{3}$.
故答案为:$\frac{2\sqrt{2}}{3}$.
点评 本题考查了线面垂直的判定,棱锥的体积计算,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | [1,3) | B. | [0,3) | C. | (-2,3) | D. | [-2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | S1,S2,S3 | B. | S1,S2,S4 | C. | S1,S3,S4 | D. | S2,S3,S4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①②③ | B. | ①③ | C. | ③④ | D. | ②③ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 5 | B. | $\frac{16}{3}$ | C. | $\frac{22}{3}$ | D. | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com