分析 (Ⅰ)求出ab=1,问题转化为|-2x+1|≥1,解出即可;(Ⅱ)问题转化为(a-1)(a-2x+1)≥0,通过讨论a的范围求出不等式的解集,从而求出a的范围即可.
解答 解:(I)由已知$a+b=\frac{a+b}{ab}$,
∵a、b不为0,∴ab=1,或a+b=0,
①ab=1时,原不等式相当于|-2x+1|≥1,
所以,-2x+1≥1或-2x+1≤-1,
解得:{x|x≤0或x≥1},
②a+b=0时,a,b异号,ab<0,
不等式|-2x+1|≥ab的解集是R;
(Ⅱ)由已知得,|x-a|≥x-1≥0,
(x-a)2≥(x-1)2,(a-1)(a-2x+1)≥0,
a=1时,(a-1)(a-2x+1)≥0恒成立,
a>1时,由(a-1)(a-2x+1)≥0得,a≥2x-1,从而a≥3,
a<1时,由(a-1)(a-2x+1)≥0得,a≤2x-1,从而a≤1,
综上所述,a的取值范围为(-∞,1]∪[3,+∞).
点评 本题考查了解绝对值不等式问题,考查分类讨论思想,是一道中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}∈A$ | B. | $\sqrt{11}∈A$ | C. | $\sqrt{7}∈A$ | D. | 4∈A |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| 天数x | 3 | 4 | 5 | 6 | 7 |
| 繁殖数(千个) | 2.5 | 3 | t | 4.5 | 6 |
| A. | 3.5 | B. | 3.75 | C. | 4 | D. | 4.25 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com