精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=|2x-a|+a.
(1)若不等式f(x)<6的解集为(-1,3),求a的值;
(2)在(1)的条件下,若存在x0∈R,使f(x0)≤t-f(-x0),求t的取值范围.

分析 (1)求得不等式f(x)<6的解集为a-3≤x≤3,再根据不等式f(x)<6的解集为(-1,3),可得a-3=-1,由此求得a的范围;
(2)令g(x)=f(x)+f(-x)=|2x-2|+|2x+2|+4,求出g(x)的最小值,可得t的范围.

解答 解:(1)∵函数f(x)=|2x-a|+a,
不等式f(x)<6的解集为(-1,3),
∴|2x-a|<6-a 的解集为(-1,3),
由|2x-a|<6-a,可得a-6<2x+a<6-a,求得a-3≤x≤3,
故有a-3=-1,a=2.
(2)在(1)的条件下,f(x)=|2x-2|+2,
令g(x)=f(x)+f(-x)=|2x-2|+|2x+2|+4=$\left\{\begin{array}{l}{4-4x,x≤-1}\\{8,-1<x<1}\\{4+4x,x≥1}\end{array}\right.$,
故g(x)的最小值为8,
故使f(x)≤t-f(-x)有解的实数t的范围为[8,+∞).

点评 本题主要考查绝对值不等式的解法,分段函数的应用,求函数的最小值,函数的能成立问题,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.在($\frac{1}{\root{3}{x}}$+2x$\sqrt{x}$)7的展开式中,x5的系数为560.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,四棱锥P-ABCD的底面是矩形,侧面PAD是边长为2的正三角形,且侧面PAD⊥底面ABCD,E为侧棱PD的中点.
(1)求证:PB∥平面EAC;
(2)求证:AE⊥平面PCD;
(3)若直线AC与平面PCD所成的角为30°,求三棱锥D-AEC的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知抛物线C:y2=4x的焦点为F,准线为l,P是l上一点,直线PF与抛物线C相交于A、B两点,若$\overrightarrow{FP}$=3$\overrightarrow{FA}$,则|AB|=(  )
A.5B.$\frac{16}{3}$C.$\frac{22}{3}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)是定义在R上的奇函数,且在区间[0,+∞)上是增函数,若$\frac{{|f(lnx)-f(ln\frac{1}{x})|}}{2}<f(1)$,则f(x)的取值范围是(  )
A.(0,$\frac{1}{e}$)B.(0,e)C.($\frac{1}{e}$,e)D.(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(Ⅰ)已知非零常数a、b满足$a+b=\frac{1}{a}+\frac{1}{b}$,求不等式|-2x+1|≥ab的解集;
(Ⅱ)若?x∈[1,2],x-|x-a|≤1恒成立,求常数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,已知抛物线C以坐标原点O为顶点,焦点F在x轴的正半轴上,且|OF|=$\frac{1}{2}$.
(1)求抛物线C的方程;
(2)过定点N(x0,y0)的动直线l与抛物线C相交于A、B两点(A、B异于点O),设OA、OB的倾斜角分别为α、β,若α+β(α+β∈(0,π))为定值,求x0的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{1}{2}$(x+$\frac{1}{x}$),g(x)=$\frac{1}{2}$(x-$\frac{1}{x}$).
(1)求函数h(x)=f(x)+2g(x)的零点;
(2)求函数F(x)=[f(x)]2n-[g(x)]2n(n∈N*)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.某位同学进行寒假社会实践活动,为了对白天平均气温与某奶茶店的某种饮料销量之间的关系进行分析研究,他分别记录了1月11日至1月15日的白天平均气温x(℃)与该奶茶店的这种饮料销量y(杯)得到如下数据
日期11日12日13日14日15日
平均气温x(℃)91012118
销量y(杯)2325302621
(1)若先从这5组数据中抽取2组,列出所有可能的结果并求抽出的2组数据恰好是相邻2天数据的概率;
(2)请根据所给的5组数据求出y关于x的线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$,并根据线性回归方程预测当气象台预报1月16日的白天气温为7℃时奶茶店这种饮料的销量(结果四舍五入).
附:线性回归方程$\widehat{y}$=$\widehat{b}$x+$\widehat{a}$中$\left\{\begin{array}{l}{\widehat{b}=\underset{\stackrel{n}{∑}}{i=1}({x}_{i}-\overline{x})({y}_{i}-\overline{y})=\frac{\underset{\stackrel{n}{∑}}{i=1}{x}_{i}{y}_{i}-n\overline{xy}}{\underset{\stackrel{n}{∑}}{i=1}{{x}_{i}}^{2}-n\overline{{x}^{2}}}}\\{\widehat{a}=\overline{y}-\widehat{b}\overline{x}}\end{array}\right.$,其中$\overline{x}$,$\overline{y}$为样本平均值.

查看答案和解析>>

同步练习册答案