精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=$\left\{\begin{array}{l}{sinx+2cos2x,x≥0}\\{-{e}^{2x},x<0}\\{\;}\end{array}\right.$,则f(f($\frac{π}{2}$))=-$\frac{1}{{e}^{2}}$.

分析 由已知条件先求出f($\frac{π}{2}$)的值,由此能求出f(f($\frac{π}{2}$))的值.

解答 解:∵函数f(x)=$\left\{\begin{array}{l}{sinx+2cos2x,x≥0}\\{-{e}^{2x},x<0}\\{\;}\end{array}\right.$,
∴f($\frac{π}{2}$)=sin$\frac{π}{2}$+2cosπ=1-2=-1,
∴f(f($\frac{π}{2}$))=f(-1)=-e-2=-$\frac{1}{{e}^{2}}$.
故答案为:-$\frac{1}{{e}^{2}}$.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意分段函数的性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知首项是1的等比数列{an},a2a6=64,则$\frac{{a}_{5}}{{a}_{3}}$的值是(  )
A.4B.2C.-4D.-2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合M={x|-2<x<3},N={y|y=log2(x2+1)},则M∩N=(  )
A.[1,3)B.[0,3)C.(-2,3)D.[-2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若函数f(x)=$\left\{\begin{array}{l}{{3}^{x-1}+1(x<2)}\\{lo{g}_{3}(x+2)(x≥2)}\end{array}\right.$,则f(7)+f(log36)=5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.在($\frac{1}{\root{3}{x}}$+2x$\sqrt{x}$)7的展开式中,x5的系数为560.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=2sin(2x-$\frac{π}{6}$)-1,则下列结论中错误的是(  )
A.f(x)的最小正周期为π
B.f(x)的图象关于直线x=$\frac{π}{3}$对称
C.f(x)在区间[0,$\frac{π}{4}$]上是增函数
D.函数f(x)的图象可由g(x)=2sin2x-1的图象向右平移$\frac{π}{6}$个单位得到

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.各项均为正数的等差数列{an},其公差d>0,前n项和为Sn,若a1,a2,a5构成等比数列,则下列能构成的等比数列的是(  )
A.S1,S2,S3B.S1,S2,S4C.S1,S3,S4D.S2,S3,S4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.数列{an}是公差为d(d≠0)的等差数列,它的前n项和记为An,数列{bn}是公比为q(q≠1)的等比数列,它的前n项和记为Bn.若a1=b1≠0,且存在不小于3的正整数k,m,使ak=bm
(1)若a1=1,d=2,q=3,m=4,求Ak
(2)若a1=1,d=2,试比较A2k与B2m的大小,并说明理由;
(3)若q=2,是否存在整数m,k,使Ak=86Bm,若存在,求出m,k的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(Ⅰ)已知非零常数a、b满足$a+b=\frac{1}{a}+\frac{1}{b}$,求不等式|-2x+1|≥ab的解集;
(Ⅱ)若?x∈[1,2],x-|x-a|≤1恒成立,求常数a的取值范围.

查看答案和解析>>

同步练习册答案