精英家教网 > 高中数学 > 题目详情
2.已知首项是1的等比数列{an},a2a6=64,则$\frac{{a}_{5}}{{a}_{3}}$的值是(  )
A.4B.2C.-4D.-2

分析 由已知结合等比数列的通项公式求得公比的平方,再由$\frac{{a}_{5}}{{a}_{3}}$=q2得答案.

解答 解:在等比数列{an}中,由a1=1,a2a6=64,
得q•q5=q6=64,
∴q2=4.
∴$\frac{{a}_{5}}{{a}_{3}}$=q2=4.
故选:A.

点评 本题考查等比数列的通项公式,考查了等比数列的性质,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.从边长为4的正方形ABCD内部任取一点P,则P到对角线AC的距离大于$\sqrt{2}$的概率为(  )
A.$\frac{1}{16}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{1}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.棱长为1的正四面体ABCD中,E为棱AB上一点(不含A,B两点),点E到平面ACD和平面BCD的距离分别为a,b,则$\frac{1}{a}+\frac{1}{b}$的最小值为(  )
A.2B.$2\sqrt{3}$C.$\frac{{7\sqrt{6}}}{3}$D.$2\sqrt{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在3张奖券中,一等奖、二等奖各有1张,另1张无奖.甲、乙两人各抽取1张,则恰有一人获奖的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知正项数列{an}的前n项和为Sn,对?n∈N*有2Sn=a${\;}_{n}^{2}$+an,令bn=$\frac{\sqrt{{a}_{n+1}}-\sqrt{{a}_{n}}}{\sqrt{{a}_{n+1}}•\sqrt{{a}_{n}}}$,设{bn}的前n项和为Tn,则Tn的最小值为1-$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.正三棱锥O-ABC的每一条棱长均为1,若$\overrightarrow{OP}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$+z$\overrightarrow{OC}$(0≤x,y,z≤1),且满足1≤x+y+z≤2,则动点P的轨迹所围成的区域的体积是$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.设集合M={-1,0,1},集合An={(x1,x2,x3,…,xn)|xi∈M,i=1,2…,n},集合An中满足条件“1≤|x1|+|x2|+…+|xn|≤m”的元素个数记为${S}_{m}^{n}$.
(1)求${S}_{2}^{2}$和${S}_{2}^{4}$的值;
(2)当m<n时,求证:${S}_{m}^{n}$<3n+2m+1-2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.三棱锥P-ABC中,△ABC和△PBC是等边三角形,侧面PBC⊥面ABC,AB=2$\sqrt{3}$,则三棱锥外接球表面积是(  )
A.18πB.19πC.20πD.21π

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知函数f(x)=$\left\{\begin{array}{l}{sinx+2cos2x,x≥0}\\{-{e}^{2x},x<0}\\{\;}\end{array}\right.$,则f(f($\frac{π}{2}$))=-$\frac{1}{{e}^{2}}$.

查看答案和解析>>

同步练习册答案