精英家教网 > 高中数学 > 题目详情
10.定在R上的偶函数f(x)在[0,+∞)上是增函数,若f($\frac{1}{3}$)=0,则适合不等式f(log${\;}_{\frac{1}{27}}$x)>0的x的取值范围是(0,$\frac{1}{3}$)∪(3,+∞).

分析 由函数f(x)是定义在R上的偶函数,且f(x)在[0,+∞)上为增函数,结合函数的对称性可将不等式f(log${\;}_{\frac{1}{27}}$x)>0等价为:f(|log${\;}_{\frac{1}{27}}$x|)>f($\frac{1}{3}$),解此不等式即可得到所求的解集.

解答 解:∵f(x)是定义在R上的偶函数,f($\frac{1}{3}$)=0
∴f(log${\;}_{\frac{1}{27}}$x)>0等价为:f(|log${\;}_{\frac{1}{27}}$x|)>f($\frac{1}{3}$),
又f(x)在[0,+∞)上为增函数,
∴|log${\;}_{\frac{1}{27}}$x|>$\frac{1}{3}$,∴log${\;}_{\frac{1}{27}}$x>$\frac{1}{3}$或log${\;}_{\frac{1}{27}}$x<-$\frac{1}{3}$,
∴0<x<$\frac{1}{3}$或x>3.
即不等式的解集为{x|x>3或0<x<$\frac{1}{3}$}
故答案为:(0,$\frac{1}{3}$)∪(3,+∞)

点评 本题考查函数奇偶性与单调性的综合,是函数性质综合考查题,熟练掌握奇偶性与单调性的对应关系是解答的关键,根据偶函数的对称性将不等式进行转化是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.集合A={y|y=x+1,x∈R},B={y|y=2x,x∈R},则A∩B为 (  )
A.{(0,1),(1,2)}B.{0,1}C.{1,2}D.(0,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\sqrt{\frac{lg(x-2)}{x}}$的定义域是(  )
A.[3,+∞)B.(3,+∞)C.(2,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知0<x<2时,f(x)=2x+x,且f(x)=f(4-x),则当2<x<4时,f(x)=24-x+4-x.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=x2-2x+2在区间[m,n]上的值域为[m,n],求m和n.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数f(x)=($\frac{1}{3}$)1-|x|的递减区间是(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.若α是第一象限角,则sinα+cosα的值与1的大小关系是(  )
A.sin α+cos α>1B.sin α+cos α=1C.sin α+cos α<1D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知:函数f(x)=sin2x+$\sqrt{3}cosxcos(\frac{π}{2}-x)$.
(Ⅰ)求函数f(x)的对称中心及对称轴方程;
(Ⅱ)当$x∈[0,\frac{7π}{12}]$时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)=$\frac{{{2^x}+a}}{{{2^x}+1}}$为奇函数,g(x)=$\left\{\begin{array}{l}alnx,x>0\\{e^{ax}},x≤0\end{array}$,则不等式g(x)>1的解集为(  )
A.(-∞,e-1B.(-∞,0)∪(0,e)C.(e,+∞)D.(-∞,0)∪(0,e-1

查看答案和解析>>

同步练习册答案