精英家教网 > 高中数学 > 题目详情
如图,在三棱锥P-ABC中,平面PAC⊥平面ABC,AB⊥BC,AB=BC=PA=PC,点O、D分别是AC、PC的中点.
( I)求证:OD∥平面PAB;
( II)求PB与平面ABC所成角.
分析:(Ⅰ)利用三角形中位线的性质,可得线线平行,从而可得线面平行;
(Ⅱ)连接PO,OB,先证明∠PBO是直线PB与平面ABC所成角,再求PB与平面ABC所成角.
解答:(Ⅰ)证明:∵O、D分别为AC、PC中点,∴OD∥PA
∵PA∥平面PAB,
∴OD∥平面PAB---------(4分)
(Ⅱ)解:连接PO,OB
∵PA=PC,∴PO⊥AC
∵平面PAC⊥平面ABC,平面PAC∩平面ABC=AC
∴PO⊥平面ABC
∴∠PBO是直线PB与平面ABC所成角
设AB=BC=PA=PC=1,则
∵AB⊥BC,∴0B=0C=
2
2
PO=
1-(
2
2
)
2
=
2
2

∴tan∠PBO=
PO
OB
=1,∴∠PBO=45°
∴PB与平面ABC所成角为45°---------(6分)
点评:本题考查线面平行,考查线面角,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA、PB、PC两两垂直,且PA=3.PB=2,PC=1.设M是底面ABC内一点,定义f(M)=(m,n,p),其中m、n、p分别是三棱锥M-PAB、三棱锥M-PBC、三棱锥M-PCA的体积.若f(M)=(
1
2
,x,y),且
1
x
+
a
y
≥8恒成立,则正实数a的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA⊥底面ABC,∠ACB=90°,AE⊥PB于E,AF⊥PC于F,若PA=AB=2,∠BPC=θ,则当△AEF的面积最大时,tanθ的值为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,PA=PB=AB=2,BC=3,∠ABC=90°,平面PAB⊥平面ABC,D、E分别为AB、AC中点.
(Ⅰ)求证:DE‖平面PBC;
(Ⅱ)求证:AB⊥PE;
(Ⅲ)求二面角A-PB-E的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在三棱锥P-ABC中,已知PA=PB=PC,∠BPA=∠BPC=∠CPA=40°,一绳子从A点绕三棱锥侧面一圈回到点A的最短距离是
3
,则PA=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在三棱锥P-ABC中,PA⊥底面ABC,∠BCA=90°,AP=AC,点D,E分别在棱
PB,PC上,且BC∥平面ADE
(I)求证:DE⊥平面PAC;
(Ⅱ)当二面角A-DE-P为直二面角时,求多面体ABCED与PAED的体积比.

查看答案和解析>>

同步练习册答案