精英家教网 > 高中数学 > 题目详情

如图,已知四棱锥中,底面为菱形,平面分别是的中点.

(1)证明:平面
(2)取,若上的动点,与平面所成最大角的正切值为,求二面角的余弦值。

(1)详见解析;(2)

解析试题分析:(1)用线面垂直证,用等腰三角形中线即为高线证,根据线面垂直得判定定理即可得证。(2)由(1)知平面,则与平面所成的角。因为为定值,所以最短即最短时角的正弦值最大。故此时。故此可推导出的值,过,则平面,过,连接,则为二面角的平面角。也可采用空间向量法。
试题解析:解:方法一:(1)证明:由四边形为菱形,,可得为正三角形,因为的中点,
所以                                1分
,因此                       2分
因为平面平面
所以                         3分
平面平面
所以平面  .              5分
(2)上任意一点,连接由(1)知平面,则与平面所成的角                    6分
中,
所以当最短时,即当时,最大 .              7分
此时,     因此

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,四棱锥P-ABCD中,底面ABCD是直角梯形,AD∥BC,AB⊥BC,AB=AD=1BC=2,又PB⊥平面ABCD,且PB=1,点E在棱PD上,且DE=2PE.

(1)求证:BE⊥平面PCD;
(2)求二面角A一PD-B的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在长方体AC1中,AB=BC=2,,点E、F分别是面A1C1、面BC1的中心.

(1)求证:BE//平面D1AC;
(2)求证:AF⊥BE;
(3)求异面直线AF与BD所成角的余弦值。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱ABCDA1B1C1D1中,侧棱A1A⊥底面ABCDABDCABADADCD=1,AA1AB=2,E为棱AA1的中点.

(1)证明B1C1CE
(2)求二面角B1CEC1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,ABCD是块矩形硬纸板,其中AB=2ADADEDC的中点,将它沿AE折成直二面角D-AE-B.

(1)求证:AD⊥平面BDE
(2)求二面角B-AD-E的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形ABCD为正方形,为等腰直角三角形,,且

(1)证明:平面平面
(2)求直线EC与平面BED所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直四棱柱ABCD-A1B1C1D1中,底面ABCD为等腰梯形,ABCDAB=4,BCCD=2,AA1=2,EE1F分别是棱ADAA1AB的中点.

(1)证明:直线EE1∥平面FCC1
(2)求二面角B-FC1-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在直三棱柱中,中点.

(1)求证:平面
(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,边长为的等边△所在的平面垂直于矩形所在的平面, 的中点.

(1)证明:
(2)求二面角的大小.

查看答案和解析>>

同步练习册答案