在如图所示的几何体中,四边形ABCD为正方形,为等腰直角三角形,,且.
(1)证明:平面平面.
(2)求直线EC与平面BED所成角的正弦值.
(1)详见解析;(2).
解析试题分析:解法一利用综合法证明解题:
(1)由已知可知AE⊥AB,又AE⊥AD,所以AE⊥平面ABCD,所以AE⊥DB,又ABCD为正方形,所以DB⊥AC,所以DB⊥平面AEC,而BD平面BED,故有平面AEC⊥平面BED.
(2)如图4-1中,设AC与BD交点为O,所以OE为两平面AEC和BED的交线.过C作平面BED的垂线,其垂足必在直线EO上,即∠OEC为EC与平面BED所成的角.再设正方形边长为2,则OA=,AE=2,所以OE=,EC=,所以在三角形OEC中,利用余弦定理可得 cos∠OEC=,故所求为sin∠OEC=.
解法二利用向量法:以A为原点,AE、AB、AD分别为x,y,z轴建立空间直角坐标系,如图4-2所示,
(1)设正方形边长为2,则E(2,0,0),B(0,2,0),C(0,2,2),D(0,0,2) (0,2,2),=(0,-2,2),=(2,0,0),=(-2,0,2),从而有,,即BD⊥AC,BD⊥AE,所以BD⊥平面AEC,故平面BED⊥平面AEC.
(2)设平面BED的法向量为,由,得,故取 8分
而=(-2,2,2),设直线EC与平面BED所成的角为,则有 .
试题解析:解法一:
(1)由已知有AE⊥AB,又AE⊥AD,
所以AE⊥平面ABCD,所以AE⊥DB, 3分
又ABCD为正方形,所以DB⊥AC, 4分
所以DB⊥平面AEC,而BD平面BED
故有平面AEC⊥平面BED. 6分
(2)设AC与BD交点为O,所以OE为两平面AEC和BED的交线.
过C作平面BED的垂线,其垂足必在直线EO上,
即∠OEC为EC与平面BED所成的角. 7分
设正方形边长为2,则OA=,AE=2,
所以OE=,EC=, 9分
所以在三角形OEC中,
由余弦定理得 cos∠OEC=,故所求为sin∠OEC= 12分
解法二:以A为原点,AE、AB、AD分别为x,y,z轴建立空间直角坐标系. 1分
(1)设正方形边长为2,则E(2,0,0),B(0,2,0),C(0,2,2),D(0,0,2) 2分
(0,2,2),=(0,-2,2),=(2,0,0),=(-2,0,2),
从而有,,
即BD⊥AC,BD⊥AE,
所以BD⊥平面AEC,
故平面BED⊥平面AEC. 6分
(2)设平面BED的法向量为,
由,得,故取 8分
而=(-2,2,2),设直线EC与平面BED所成的角为,
则有 12分
考点:1.直线与平面垂直的判定定理,平面与平面垂直的判定定理;2.直线与平面成角.
科目:高中数学 来源: 题型:解答题
如图所示,直三棱柱ABCA1B1C1中,D、E分别是AB、BB1的中点,AA1=AC=CB=AB.
(1)证明:BC1∥平面A1CD;
(2)求二面角DA1CE的正弦值..
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图所示,四棱锥P-ABCD的底面ABCD为一直角梯形,其中BA⊥AD,CD⊥AD,CD=AD=2AB,PA⊥底面ABCD,E是PC的中点.
(1)求证:BE∥平面PAD;
(2)若BE⊥平面PCD,求平面EBD与平面BDC夹角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,E为BD的中点,G为PD的中点,△DAB≌△DCB,EA=EB=AB=1,PA=,连接CE并延长交AD于F.
(1)求证:AD⊥平面CFG;
(2)求平面BCP与平面DCP的夹角的余弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
如图,已知四棱锥中,底面为菱形,平面,,分别是的中点.
(1)证明:平面;
(2)取,若为上的动点,与平面所成最大角的正切值为,求二面角的余弦值。
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在四棱锥P-ABCD中,底面ABCD是边长为1的正方形,且PA⊥平面ABCD.
(1)求证:PC⊥BD;
(2)过直线BD且垂直于直线PC的平面交PC于点E,且三棱锥E-BCD的体积取到最大值.
①求此时四棱锥E-ABCD的高;
②求二面角A-DE-B的正弦值的大小.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
在正三棱柱ABC-A1B1C1中,AB=2,AA1=,点D为AC的中点,点E在线段AA1上.
(1)当AE∶EA1=1∶2时,求证DE⊥BC1;
(2)是否存在点E,使二面角D-BE-A等于60°,若存在求AE的长;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
斜三棱柱,其中向量,三个向量之间的夹角均为,点分别在上且,=4,如图
(Ⅰ)把向量用向量表示出来,并求;
(Ⅱ)把向量用表示;
(Ⅲ)求与所成角的余弦值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com