精英家教网 > 高中数学 > 题目详情

如图,在四棱锥P-ABCD中,PA⊥平面ABCDEBD的中点,GPD的中点,△DAB≌△DCBEAEBAB=1,PA,连接CE并延长交ADF.

(1)求证:AD⊥平面CFG
(2)求平面BCP与平面DCP的夹角的余弦值.

(1)见解析(2)

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如右图,在棱长为a的正方体ABCDA1B1C1D1中,G为△BC1D的重心,

(1)试证:A1、G、C三点共线;
(2)试证:A1C⊥平面BC1D;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在矩形ABCD中,AB=3,AD=6,BD是对角线,过点A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置,且PB=.

(1)求证:PO⊥平面ABCE;
(2)求二面角E­AP­B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱锥的底面为一直角梯形,侧面PAD是等边三角形,其中,平面底面的中点.

(1)求证://平面
(2)求与平面BDE所成角的余弦值;
(3)线段PC上是否存在一点M,使得AM⊥平面PBD,如果存在,求出PM的长度;如果不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,四棱柱ABCDA1B1C1D1中,侧棱A1A⊥底面ABCDABDCABADADCD=1,AA1AB=2,E为棱AA1的中点.

(1)证明B1C1CE
(2)求二面角B1CEC1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四边形ABCD是菱形,∠BAD=60°,四边形BDEF是矩形,平面BDEF⊥平面ABCDGH分别是CECF的中点.

(1)求证:平面AEF∥平面BDGH
(2)若平面BDGH与平面ABCD所成的角为60°,求直线CF与平面BDGH所成的角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在如图所示的几何体中,四边形ABCD为正方形,为等腰直角三角形,,且

(1)证明:平面平面
(2)求直线EC与平面BED所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知在长方体中,点为棱上任意一点,.

(Ⅰ)求证:平面平面
(Ⅱ)若点为棱的中点,点为棱的中点,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱柱ABC-A1B1C1中,BC⊥侧面AA1C1C,AC=BC=1,CC1=2, ∠CAA1= ,D、E分别为AA1、A1C的中点.

(1)求证:A1C⊥平面ABC;(2)求平面BDE与平面ABC所成角的余弦值.

查看答案和解析>>

同步练习册答案