精英家教网 > 高中数学 > 题目详情

如右图,在棱长为a的正方体ABCDA1B1C1D1中,G为△BC1D的重心,

(1)试证:A1、G、C三点共线;
(2)试证:A1C⊥平面BC1D;

(1)见解析(2)见解析

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在三棱柱中,底面分别是棱的中点,为棱上的一点,且//平面.
(1)求的值;
(2)求证:
(3)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如下图,在四棱柱中,底面和侧面
是矩形,的中点,.
(1)求证:
(2)求证:平面
(3)若平面与平面所成的锐二面角的大小为,求线段的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,三棱锥中,,点在平面内的射影恰为的重心,M为侧棱上一动点.

(1)求证:平面平面
(2)当M为的中点时,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=.

(1)若,求证:AB∥平面CDE;
(2)求实数的值,使得二面角AECD的大小为60°.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在斜三棱柱中,O是AC的中点,平面.

(1)求证:平面
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,直三棱柱ABCA1B1C1中,D、E分别是AB、BB1的中点,AA1=AC=CB=AB.

(1)证明:BC1∥平面A1CD;
(2)求二面角DA1CE的正弦值..

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图几何体中,四边形为矩形,.

(1)若的中点,证明:
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在四棱锥P-ABCD中,PA⊥平面ABCDEBD的中点,GPD的中点,△DAB≌△DCBEAEBAB=1,PA,连接CE并延长交ADF.

(1)求证:AD⊥平面CFG
(2)求平面BCP与平面DCP的夹角的余弦值.

查看答案和解析>>

同步练习册答案