精英家教网 > 高中数学 > 题目详情

如下图,在四棱柱中,底面和侧面
是矩形,的中点,.
(1)求证:
(2)求证:平面
(3)若平面与平面所成的锐二面角的大小为,求线段的长度.

(1)详见解析;(2)详见解析;(3).

解析试题分析:(1)利用已知条件得到,从而证明平面,得到再结合证明平面,从而得到;(2)连接证明四边形为平行四边形,连接对角线的交点与点的连线为的中位线,再利用线面平行的判定定理即可证明平面;(3)在(1)的前提条件中平面下,选择以点为坐标原点,分别为轴、轴的空间直角坐标系,设,利用法向量将条件“平面与平面所成的锐二面角的大小为”进行转化,从而求出的长度.
试题解析:(1)因为底面和侧面是矩形,
所以
又因为
所以平面
因为平面
所以
(2)因为
所以四边形是平行四边形.
连接于点,连接,则的中点.
中,因为
所以.
又因为平面平面
所以平面
(3)由(1)可知
又因为
所以平面.
设G为AB的中点,以E为原点,所在直线分别为轴、轴、

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

如图,在棱长为2的正方体中,分别是棱的中点,点分别在棱,上移动,且.
时,证明:直线平面
是否存在,使平面与面所成的二面角为直二面角?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,在底面边长为1,侧棱长为2的正四棱柱中,P是侧棱上的一点,.
(1)试确定m,使直线AP与平面BDD1B1所成角为60º;
(2)在线段上是否存在一个定点,使得对任意的m,
⊥AP,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,等腰梯形ABCD,AD//BC,P是平面ABCD外一点,P在平面ABCD的射影O恰在AD上,.

(1)证明:
(2)求二面角A-BP-D的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知四棱锥P-ABCD中,PB⊥平面ABCD,底面ABCD是直角梯形,∠ABC=∠BCD=90°,PB=BC=CD=AB.Q是PC上的一点,且PA∥平面QBD.

⑴确定Q的位置;
⑵求二面角Q-BD-C的平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,是以为直径的半圆上异于的点,矩形所在的平面垂直于半圆所在的平面,且.

(1)求证:
(2)若异面直线所成的角为,求平面与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图,已知平面四边形中,的中点,
.将此平面四边形沿折成直二面角
连接,设中点为

(1)证明:平面平面
(2)在线段上是否存在一点,使得平面?若存在,请确定点的位置;若不存在,请说明理由.
(3)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如右图,在棱长为a的正方体ABCDA1B1C1D1中,G为△BC1D的重心,

(1)试证:A1、G、C三点共线;
(2)试证:A1C⊥平面BC1D;

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

如图所示,在矩形ABCD中,AB=3,AD=6,BD是对角线,过点A作AE⊥BD,垂足为O,交CD于E,以AE为折痕将△ADE向上折起,使点D到点P的位置,且PB=.

(1)求证:PO⊥平面ABCE;
(2)求二面角E­AP­B的余弦值.

查看答案和解析>>

同步练习册答案