精英家教网 > 高中数学 > 题目详情
如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A、B,将直线AB按向量平移得到直线l,N为l上的动点,M为抛物线弧AB上的动点.
(Ⅰ) 若|AB|=8,求抛物线方程.
(Ⅱ)求S△ABM的最大值.
(Ⅲ)求的最小值.

【答案】分析:(Ⅰ)利用韦达定理及抛物线的定义,计算弦长,即可求得抛物线的标准方程;
(Ⅱ)由(Ⅰ)知|AB|=4p,故求S△ABM的最大值,即求M到AB距离的最大值;
(Ⅲ)利用向量的数量积公式,结合配方法,即可求的最小值.
解答:解:(Ⅰ)由条件知,则,消去x得:①,则x1+x2=3p,
由抛物线定义|AB|=x1+x2+p=4p,
又因为|AB|=8,即p=2,则抛物线方程为y2=4x.---------------------------(3分)
(Ⅱ)由(Ⅰ)知|AB|=4p和,设
则M到AB距离:,因M,O在直线AB的同侧,所以
,即
由①知
所以,则当y=p时,
.---------------------------------------(8分)
(Ⅲ)设,A(x1,y1),B(x2,y2),


由①知x1+x2=3p,,y1+y2=2p,则
,当x=p时,的最小值为
(其它方法酌情给分)---------------------------------------------------(12分)
点评:本题考查抛物线的弦长计算,考查三角形面积,考查向量知识,解题的关键是正确运用抛物线的定义,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A、B,M为抛物线弧AB上的动点.
(1)若|AB|=8,求抛物线的方程;
(2)求S△ABM的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,斜率为1的直线过抛物线Ω:y2=2px(p>0)的焦点F,与抛物线交于两点A,B,
(1)若|AB|=8,求抛物线Ω的方程;
(2)设C为抛物线弧AB上的动点(不包括A,B两点),求△ABC的面积S的最大值;
(3)设P是抛物线Ω上异于A,B的任意一点,直线PA,PB分别交抛物线的准线于M,N两点,证明M,N两点的纵坐标之积为定值(仅与p有关)

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A、B,将直线AB按向量
a
=(-p,0)
平移得到直线l,N为l上的动点,M为抛物线弧AB上的动点.
(Ⅰ) 若|AB|=8,求抛物线方程.
(Ⅱ)求S△ABM的最大值.
(Ⅲ)求
NA
NB
的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,斜率为1的直线过抛物线y2=2px(p>0)的焦点,与抛物线交于两点A、B,将直线AB按向量
a
=(-p,0)
平移到直线l,N为l上的动点.
(1)若|AB|=8,求抛物线的方程;
(2)求
NA
NB
的最小值.

查看答案和解析>>

科目:高中数学 来源:山东省枣庄市2010届高三年级调研考试数学(文科)试题 题型:解答题

(本题满分12分)

如图,斜率为1的直线过抛物线的焦点F,与抛物线交于两点AB

   (1)若|AB|=8,求抛物线的方程;

   (2)设C为抛物线弧AB上的动点(不包括AB两点),求的面积S的最大值;

   (3)设P是抛物线上异于AB的任意一点,直线PAPB分别交抛物线的准线于MN两点,证明MN两点的纵坐标之积为定值(仅与p有关)

 

查看答案和解析>>

同步练习册答案